Nantaporn Haskins
Children's National Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nantaporn Haskins.
BMC Biochemistry | 2008
Nantaporn Haskins; Maria Panglao; Qiuhao Qu; Himani Majumdar; Juan Cabrera-Luque; Hiroki Morizono; Mendel Tuchman; Ljubica Caldovic
BackgroundThe efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI) in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII) in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS), which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS.ResultsInformation from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K) of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine.ConclusionDifference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine inhibition of NAGS to activation was gradual, from complete inhibition of bacterial NAGS, to partial inhibition of fish NAGS, to activation of frog and mammalian NAGS. This change also coincided with the conquest of land by amphibians and mammals.
PLOS ONE | 2011
Dashuang Shi; Yongdong Li; Juan Cabrera-Luque; Zhongmin Jin; Xiaolin Yu; Gengxiang Zhao; Nantaporn Haskins; Norma M. Allewell; Mendel Tuchman
Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 Å resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26° is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.
Biochemical and Biophysical Research Communications | 2013
Gengxiang Zhao; Nantaporn Haskins; Zhongmin Jin; Norma M. Allewell; Mendel Tuchman; Dashuang Shi
Maricaulis maris N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in L-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by L-arginine, although L-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by L-arginine, we have determined the structure of the mmNAGS/K complexed with L-arginine at 2.8 Å resolution. In contrast to the structure of mmNAGS/K in the absence of L-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the L-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyltransferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when L-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by L-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism.
PLOS ONE | 2014
Ljubica Caldovic; Nantaporn Haskins; Amy Mumo; Himani Majumdar; Mary Pinter; Mendel Tuchman; Alison Krufka
The urea cycle converts ammonia, a waste product of protein catabolism, into urea. Because fish dispose ammonia directly into water, the role of the urea cycle in fish remains unknown. Six enzymes, N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase III, ornithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and arginase 1, and two membrane transporters, ornithine transporter and aralar, comprise the urea cycle. The genes for all six enzymes and both transporters are present in the zebrafish genome. NAGS (EC 2.3.1.1) catalyzes the formation of N-acetylglutamate from glutamate and acetyl coenzyme A and in zebrafish is partially inhibited by L-arginine. NAGS and other urea cycle genes are highly expressed during the first four days of zebrafish development. Sequence alignment of NAGS proteins from six fish species revealed three regions of sequence conservation: the mitochondrial targeting signal (MTS) at the N-terminus, followed by the variable and conserved segments. Removal of the MTS yields mature zebrafish NAGS (zfNAGS-M) while removal of the variable segment from zfNAGS-M results in conserved NAGS (zfNAGS-C). Both zfNAGS-M and zfNAGS-C are tetramers in the absence of L-arginine; addition of L-arginine decreased partition coefficients of both proteins. The zfNAGS-C unfolds over a broader temperature range and has higher specific activity than zfNAGS-M. In the presence of L-arginine the apparent Vmax of zfNAGS-M and zfNAGS-C decreased, their Km app for acetyl coenzyme A increased while the Km app for glutamate remained unchanged. The expression pattern of NAGS and other urea cycle genes in developing zebrafish suggests that they may have a role in citrulline and/or arginine biosynthesis during the first day of development and in ammonia detoxification thereafter. Biophysical and biochemical properties of zebrafish NAGS suggest that the variable segment may stabilize a tetrameric state of zfNAGS-M and that under physiological conditions zebrafish NAGS catalyzes formation of N-acetylglutamate at the maximal rate.
bioRxiv | 2018
Parthasarathy Sonaimuthu; Emilee Senkevitch; Nantaporn Haskins; Prech Uapinyoying; Markey C. McNutt; Hiroki Morizono; Mendel Tuchman; Ljubica Caldovic
The urea cycle protects the central nervous system from ammonia toxicity by converting ammonia to non-toxic urea. N-acetylglutamate synthase (NAGS) is an enzyme that catalyzes the formation of N-acetylglutamate (NAG), an allosteric activator of carbamylphosphate synthetase 1 (CPS1), the rate limiting enzyme of the urea cycle. Enzymatic activity of mammalian NAGS doubles in the presence of L-arginine but the physiological significance of NAGS activation by L-arginine is unknown. Previously, we have described the creation of a NAGS knockout (Nags−/−) mouse, which develops hyperammonemia without N-carbamylglutamate and L-citrulline supplementation (NCG+Cit). In order to investigate the effect of L-arginine on ureagenesis in vivo, we used adeno associated virus (AAV) mediated gene transfer to deliver either wild-type or E354A mutant mouse NAGS (mNAGS), which is not activated by L-arginine, to Nags−/− mice. The ability of the E354A mNAGS mutant protein to rescue Nags−/− mice was determined by measuring their activity on the voluntary wheel following NCG+Cit withdrawal. The Nags−/− mice that received E354A mNAGS remained apparently healthy and active but had elevated plasma ammonia concentration despite similar expression levels of the E354A mNAGS and control wild-type NAGS proteins. The corresponding mutation in human NAGS (NP 694551.1:p.E360D) that abolishes binding and activation by L-arginine was also identified in a patient with hyperammonemia due to NAGS deficiency. Taken together, our results suggest that L-arginine binding to the NAGS enzyme is essential for normal ureagenesis.
bioRxiv | 2018
Sandra Kirsch Heibel; Peter J. McGuire; Nantaporn Haskins; Himani Majumdar; Sree Rayavarapu; Kanneboyina Nagaraju; Yetrib Hathout; Kristy J. Brown; Mendel Tuchman; Ljubica Caldovic
Abundance of urea cycle enzymes in the liver is regulated by the dietary protein intake. Although urea cycle enzyme levels rise in response to a high protein diet, signaling networks that sense dietary protein intake and trigger changes in expression of urea cycle genes have not been identified. The aim of this study was to identify signaling pathway(s) that respond to changes in protein intake and regulate expression of urea cycle genes in mice and human hepatocytes. Mice were adapted to either control or high (HP) protein diets followed by isolation of liver protein and mRNA and integrated analysis of the proteomic and transcriptome profiles. HP diet led to increased expression of mRNA and enzymes in amino acid degradation pathways, and decreased expression of mRNA and enzymes in carbohydrate and fat metabolism, which implicated AMPK as a possible regulator. Primary human hepatocytes, treated with AICAR an activator of AMPK, were used to test whether AMPK regulates expression of urea cycle genes. The abundance of CPS1 and OTC mRNA increased in hepatocytes treated with AICAR, which supports a role for AMPK signaling in regulation of the urea cycle. Because AMPK is either a target of drugs used to treat type-2 diabetes, these drugs might increase the expression of urea cycle enzymes in patients with urea cycle disorders, which could be the basis of a new therapeutic approach. Author summary Integrated analysis of transcriptional and proteomic profiles of the liver tissue from mice fed different protein content diets revealed that AMPK signaling pathway regulates expression of urea cycle enzymes.
Scientific Reports | 2018
Monique Williams; Alberto Burlina; Laura Rubert; Giulia Polo; George J. G. Ruijter; Myrthe van den Born; Véronique Rüfenacht; Nantaporn Haskins; Laura J. C. M. van Zutven; Mendel Tuchman; Jasper J. Saris; Johannes Häberle; Ljubica Caldovic
N-acetylglutamate synthase deficiency (NAGSD, MIM #237310) is an autosomal recessive disorder of the urea cycle that results from absent or decreased production of N-acetylglutamate (NAG) due to either decreased NAGS gene expression or defective NAGS enzyme. NAG is essential for the activity of carbamylphosphate synthetase 1 (CPS1), the first and rate-limiting enzyme of the urea cycle. NAGSD is the only urea cycle disorder that can be treated with a single drug, N-carbamylglutamate (NCG), which can activate CPS1 and completely restore ureagenesis in patients with NAGSD. We describe a novel sequence variant NM_153006.2:c.-3026C > T in the NAGS enhancer that was found in three patients from two families with NAGSD; two patients had hyperammonemia that resolved upon treatment with NCG, while the third patient increased dietary protein intake after initiation of NCG therapy. Two patients were homozygous for the variant while the third patient had the c.-3026C > T variant and a partial uniparental disomy that encompassed the NAGS gene on chromosome 17. The c.-3026C > T sequence variant affects a base pair that is highly conserved in vertebrates; the variant is predicted to be deleterious by several bioinformatics tools. Functional assays in cultured HepG2 cells demonstrated that the c.-3026C > T substitution could result in reduced expression of the NAGS gene. These findings underscore the importance of analyzing NAGS gene regulatory regions when looking for molecular causes of NAGSD.
Scientific Reports | 2016
Nantaporn Haskins; Amy Mumo; P H Brown; Mendel Tuchman; Hiroki Morizono; Ljubica Caldovic
N-acetylglutamate synthase (NAGS; E.C.2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from acetyl coenzyme A and glutamate. In microorganisms and plants, NAG is the first intermediate of the L-arginine biosynthesis; in animals, NAG is an allosteric activator of carbamylphosphate synthetase I and III. In some bacteria bifunctional N-acetylglutamate synthase-kinase (NAGS-K) catalyzes the first two steps of L-arginine biosynthesis. L-arginine inhibits NAGS in bacteria, fungi, and plants and activates NAGS in mammals. L-arginine increased thermal stability of the NAGS-K from Maricaulis maris (MmNAGS-K) while it destabilized the NAGS-K from Xanthomonas campestris (XcNAGS-K). Analytical gel chromatography and ultracentrifugation indicated tetrameric structure of the MmMNAGS-K in the presence and absence of L-arginine and a tetramer-octamer equilibrium that shifted towards tetramers upon binding of L-arginine for the XcNAGS-K. Analytical gel chromatography of mouse NAGS (mNAGS) indicated either different oligomerization states that are in moderate to slow exchange with each other or deviation from the spherical shape of the mNAGS protein. The partition coefficient of the mNAGS increased in the presence of L-arginine suggesting smaller hydrodynamic radius due to change in either conformation or oligomerization. Different effects of L-arginine on oligomerization of NAGS may have implications for efforts to determine the three-dimensional structure of mammalian NAGS.
Biophysical Journal | 2011
Ljubica Caldovic; Nantaporn Haskins; Amy Mumo; Mendel Tuchman; Hiroki Morizono
N-acetylglutamate synthase (NAGS; E.C.2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from acetyl coenzyme A and glutamate. In microorganisms and plants, NAG is the first intermediate of arginine biosynthesis pathway, while in animals, NAG acts as an allosteric activator of carbamylphosphate synthetase I and III. NAGS itself is allosterically regulated by arginine. In bacteria, fungi, and plants, arginine acts as an inhibitor, in fish, a partial inhibitor, but in mammals, arginine is an activator. We used Thermofluor methodology to determine if the effect of arginine on the thermal stability of NAGS parallels its effects on NAGS activity. Addition of arginine to bacterial NAGS, which is inhibited by arginine, resulted in a destabilized protein. Addition of arginine to the zebrafish and mouse NAGS stabilized both proteins, despite opposing effects of arginine on their enzymatic activity. We then used analytical gel chromatography to determine if changes in oligomerization state of NAGS could occur upon arginine binding. Our results indicate that bacterial and mammalian NAGS appear to be ensembles of molecules with different oligomerization states that are in rapid exchange with each other. Upon addition of arginine, the partition coefficient of both NAGS increased. The behavior of zebrafish NAGS was different. It eluted as two peaks suggesting two distinct oligomerization states. Upon addition of arginine to zebrafish NAGS the partition coefficients of both peaks decreased. These studies indicate that the effect of arginine on the biophysical properties of NAGS indeed changed during evolution and suggest that the inversion of the allosteric effect and stabilization effects of arginine on NAGS could be linked.
Molecular Genetics and Metabolism | 2006
Ljubica Caldovic; Giselle Y. Lopez; Nantaporn Haskins; Maria Panglao; Dashuang Shi; Hiroki Morizono; Mendel Tuchman