Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naofumi Suematsu is active.

Publication


Featured researches published by Naofumi Suematsu.


Scientific Reports | 2013

Cholinergic modulation of response gain in the rat primary visual cortex

Shogo Soma; Satoshi Shimegi; Naofumi Suematsu; Hiromichi Sato

Acetylcholine (ACh) is known to modulate neuronal activity in the rodent primary visual cortex (V1). Although cholinergic modulation has been extensively examined in vitro, far less is understood regarding how ACh modulates visual information processing in vivo. We therefore extracellularly recorded visual responses to drifting sinusoidal grating stimuli from V1 of anesthetized rats and tested the effects of ACh administered locally by microiontophoresis. ACh exerted response facilitation or suppression in individual neurons across all cortical layers without any laminar bias. We assessed ACh effects on the stimulus contrast-response function, finding that ACh increased or decreased the response to varying stimulus contrasts in proportion to the magnitude of the control response without changing the shape of the original contrast-response function, which describes response gain control but not contrast gain control. Our results indicate that ACh serves as a gain controller in the visual cortex of rodents.


PLOS ONE | 2013

Modulation-Specific and Laminar-Dependent Effects of Acetylcholine on Visual Responses in the Rat Primary Visual Cortex

Shogo Soma; Satoshi Shimegi; Naofumi Suematsu; Hiroshi Tamura; Hiromichi Sato

Acetylcholine (ACh) is secreted from cholinergic neurons in the basal forebrain to regions throughout the cerebral cortex, including the primary visual cortex (V1), and influences neuronal activities across all six layers via a form of diffuse extrasynaptic modulation termed volume transmission. To understand this effect in V1, we performed extracellular multi-point recordings of neuronal responses to drifting sinusoidal grating stimuli from the cortical layers of V1 in anesthetized rats and examined the modulatory effects of topically administered ACh. ACh facilitated or suppressed the visual responses of individual cells with a laminar bias: response suppression prevailed in layers 2/3, whereas response facilitation prevailed in layer 5. ACh effects on the stimulus contrast-response function showed that ACh changes the response gain upward or downward in facilitated or suppressed cells, respectively. Next, ACh effects on the signal-to-noise (S/N) ratio and the grating-phase information were tested. The grating-phase information was calculated as the F1/F0 ratio, which represents the amount of temporal response modulation at the fundamental frequency (F1) of a drifting grating relative to the mean evoked response (F0). In facilitated cells, ACh improved the S/N ratio, while in suppressed cells it enhanced the F1/F0 ratio without any concurrent reduction in the S/N ratio. These effects were predominantly observed in regular-spiking cells, but not in fast-spiking cells. Electrophysiological and histological findings suggest that ACh promotes the signaling of grating-phase information to higher-order areas by a suppressive effect on supragranular layers and enhances feedback signals with a high S/N ratio to subcortical areas by a facilitatory effect on infragranular layers. Thus, ACh distinctly and finely controls visual information processing in a manner that is specific for the modulation and cell type and is also laminar dependent.


Behavioural Brain Research | 2013

Cholinesterase inhibitor, donepezil, improves visual contrast detectability in freely behaving rats.

Shogo Soma; Naofumi Suematsu; Satoshi Shimegi

Acetylcholine (ACh) modulates neuronal activities in extensive brain regions to play an essential role in various brain functions including attention, learning and memory, and cognition. Although ACh is known to modulate information processing in the primary visual cortex (V1) in many species including rodent, its functional role in visual ability has remained unknown. We examined whether and how ACh influences behavioral contrast detectability in rat. The detectability was assessed as the contrast sensitivity (CS) to a grating stimulus. Measurements were performed in a two-alternative forced-choice task combined with a staircase method in freely behaving rats. The contrast sensitivity function of rats under the no drug condition showed a low-pass spatial frequency (SF) tuning peaking at 0.1 cycles/degree (cpd) of SF (SF(peak)) that bottomed at 0.5 cpd (SF(bottom)), which was sensitive to the stimulus size, but to neither the temporal frequency nor orientation of the stimulus. The stimulus size was correlated with the CS only at the low SF range. The effect of donepezil on the size- and SF-dependency of the CS was examined using three stimulus conditions: an easy detectability condition with large grating at SF(peak), a difficult detectability condition with small grating at SF(peak), and an upper limit SF condition with large grating at SF(bottom). Donepezil improved the CS at SF(peak), especially in the difficult detectability condition. Therefore, we conclude that ACh plays an important role in enhancing behavioral CS at sensitive SF ranges, but not in improving the upper limit of SF.


Neural Networks | 2012

Relationship between orientation sensitivity and spatiotemporal receptive field structures of neurons in the cat lateral geniculate nucleus

Naofumi Suematsu; Tomoyuki Naito; Hiromichi Sato

Although it is thought that orientation selectivity first emerges in the primary visual cortex, several studies have reported that neurons in the cat lateral geniculate nucleus (LGN) are sensitive to stimulus orientation, especially for high spatial frequency (SF) stimuli. To understand how this orientation sensitivity emerges, we investigated the spatiotemporal structures of linear receptive fields (RFs) of LGN neurons. Orientation tunings at several SFs were measured using sinusoidal drifting grating stimuli. Fine spatiotemporal structures of the linear RFs were measured using a reverse correlation technique and two-dimensional dynamic Gaussian white noise stimuli. A non-linear response modulation function was estimated by comparing measured responses with responses predicted from a linear RF structure. Although we found that a population of LGN neurons exhibited significantly elongated linear RF centers and that the angles of the long axes corresponded well to the preferred orientations, the orientation tunings predicted from the linear RFs were significantly broader than those measured. These results suggest that orientation-tuned non-linear response modulation induced by stimulation outside the classical RF contributes to the sharp orientation tuning seen in LGN neurons.


Frontiers in Aging Neuroscience | 2014

Blockade of muscarinic receptors impairs the retrieval of well-trained memory.

Shogo Soma; Naofumi Suematsu; Satoshi Shimegi

Acetylcholine (ACh) is known to play an important role in memory functions, and its deficit has been proposed to cause the cognitive decline associated with advanced age and Alzheimers disease (the cholinergic hypothesis). Although many studies have tested the cholinergic hypothesis for recently acquired memory, only a few have investigated the role of ACh in the retrieval process of well-trained cognitive memory, which describes the memory established from repetition and daily routine. To examine this point, we trained rats to perform a two-alternative forced-choice visual detection task. Each trial was started by having the rats pull upward a central-lever, which triggered the presentation of a visual stimulus to the right or left side of the display monitor, and then pulling upward a stimulus-relevant choice-lever located on both sides. Rats learned the task within 10 days, and the task training was continued for a month. Task performance was measured with or without systemic administration of a muscarinic ACh receptor (mAChR) antagonist, scopolamine (SCOP), prior to the test. After 30 min of SCOP administration, rats stopped manipulating any lever even though they explored the lever and surrounding environment, suggesting a loss of the task-related associative memory. Three hours later, rats were recovered to complete the trial, but the rats selected the levers irrespective of the visual stimulus, suggesting they remembered a series of lever-manipulations in association with a reward, but not association between the reward and visual stimulation. Furthermore, an m1-AChR, but not nicotinic AChR antagonist caused a similar deficit in the task execution. SCOP neither interfered with locomotor activity nor drinking behavior, while it influenced anxiety. These results suggest that the activation of mAChRs at basal ACh levels is essential for the recall of well-trained cognitive memory.


Neuroscience Research | 2013

Effects of stimulus spatial frequency, size, and luminance contrast on orientation tuning of neurons in the dorsal lateral geniculate nucleus of cat

Tomoyuki Naito; Masahiro Okamoto; Osamu Sadakane; Satoshi Shimegi; Hironobu Osaki; Shin-ichiro Hara; Akihiro Kimura; Ayako Ishikawa; Naofumi Suematsu; Hiromichi Sato

It is generally thought that orientation selectivity first appears in the primary visual cortex (V1), whereas neurons in the lateral geniculate nucleus (LGN), an input source for V1, are thought to be insensitive to stimulus orientation. Here we show that increasing both the spatial frequency and size of the grating stimuli beyond their respective optimal values strongly enhance the orientation tuning of LGN neurons. The resulting orientation tuning was clearly contrast-invariant. Furthermore, blocking intrathalamic inhibition by iontophoretically administering γ-aminobutyric acid (GABA)A receptor antagonists, such as bicuculline and GABAzine, slightly but significantly weakened the contrast invariance. Our results suggest that orientation tuning in the LGN is caused by an elliptical classical receptive field and orientation-tuned surround suppression, and that its contrast invariance is ensured by local GABAA inhibition. This contrast-invariant orientation tuning in LGN neurons may contribute to the contrast-invariant orientation tuning seen in V1 neurons.


Frontiers in Systems Neuroscience | 2013

Spatiotemporal receptive field structures in retinogeniculate connections of cat

Naofumi Suematsu; Tomoyuki Naito; Tomomitsu Miyoshi; Hajime Sawai; Hiromichi Sato

The spatial structure of the receptive field (RF) of cat lateral geniculate nucleus (LGN) neurons is significantly elliptical, which may provide a basis for the orientation tuning of LGN neurons, especially at high spatial frequency stimuli. However, the input mechanisms generating this elliptical RF structure are poorly defined. We therefore compared the spatiotemporal RF structures of pairs of retinal ganglion cells (RGCs) and LGN neurons that form monosynaptic connections based on the cross-correlation analysis of their firing activities. We found that the spatial RF structure of both RGCs and LGN neurons were comparably elliptical and oriented in a direction toward the area centralis. Additionally, the spatial RF structures of pairs with the same response sign were often overlapped and similarly oriented. We also found there was a small population of pairs with RF structures that had the opposite response sign and were spatially displaced and independently oriented. Finally, the temporal RF structure of an RGC was tightly correlated with that of its target LGN neuron, though the response duration of the LGN neuron was significantly longer. Our results suggest that the elliptical RF structure of an LGN neuron is mainly inherited from the primary projecting RGC and is affected by convergent inputs from multiple RGCs. We discuss how the convergent inputs may enhance the stimulus feature sensitivity of LGN neurons.


Physiological Reports | 2014

Efficient training protocol for rapid learning of the two-alternative forced-choice visual stimulus detection task.

Shogo Soma; Naofumi Suematsu; Satoshi Shimegi

The potential of genetically engineered rodent models has accelerated demand for training procedures of behavioral tasks. Such training is generally time consuming and often shows large variability in learning speed between animals. To overcome these problems, we developed an efficient and stable training system for the two‐alternative forced‐choice (2AFC) visual stimulus detection task for freely behaving rodents. To facilitate the task learning, we introduced a spout‐lever as the operandum and a three‐step training program with four ingenuities: (1) a salient stimulus to draw passive attention, (2) a reward‐guaranteed trial to keep motivation, (3) a behavior‐corrective trial, and (4) switching from a reward‐guaranteed trial to a nonguaranteed one to correct behavioral patterns. Our new training system realizes 1‐week completion of the whole learning process, during which all rats were able to learn effortlessly the association between (1) lever‐manipulation and reward and (2) visual stimulus and reward in a step‐by‐step manner. Thus, our new system provides an effective and stable training method for the 2AFC visual stimulus detection task. This method should help accelerate the move toward research bridging the visual functions measured in behavioral tasks and the contributing specific neurons/networks that are genetically manipulated or optically controlled.


Journal of Vision | 2014

Relative spatial frequency tuning and its contrast dependency in human perception

Tomoyuki Naito; Naofumi Suematsu; Eriko Matsumoto; Hiromichi Sato

Several physiological studies in cats and monkeys have reported that the spatial frequency (SF) tuning of visual neurons varies depending on the luminance contrast and size of stimulus. However, comparatively little is known about the effect of changing the stimulus contrast and size on SF tuning in human perception. In the present study, we investigated the effects of stimulus size and luminance contrast on human SF tuning using the subspace-reverse-correlation method. Measuring SF tunings at six different stimulus sizes and three different luminance contrast conditions (90%, 10%, and 1%), we found that human perception exhibits significant stimulus-size-dependent SF tunings. At 90% and 10% contrast, participants exhibited relative SF tuning (cycles/image) rather than absolute SF tuning (cycles/°) at response peak latency. On the other hand, at 1% contrast, the magnitude of the size-dependent-peak SF shift was too small for strictly relative SF tuning. These results show that human SF tuning is not fixed, but varies depending on the stimulus size and contrast. This dependency may contribute to size-invariant object recognition within an appropriate contrast rage.


Behavioural Processes | 2018

Discretion for behavioral selection affects development of habit formation after extended training in rats

Shogo Soma; Naofumi Suematsu; Junichi Yoshida; Alain Ríos; Satoshi Shimegi

As training progresses, animals show a transition from goal-dependent behavior to goal-independent behavior (habitual responses). Habit formation is influenced by several factors, including the amount of training and action-outcome contingency. However, it remains unknown whether and how discretion for behavioral selection influences habit formation. To this end, we trained male rats in two types of two-alternative forced-choice task: visual association and nonvisual association tasks. In the first type of task, rats learned the association between reward and a visual cue, the position of which was randomly changed per trial so that rats had to make a judgmental decision about which choice delivered the reward in each trial (discreet judgment group); in the second type of task, the rats learned that a reward was delivered after either choice following task initiation (uncontrolled judgment group). To test the sensitivity to contingency manipulation, the extinction tests were conducted in short- and long-term trained groups, with the result that the overtrained rats in the uncontrolled judgment group, but not the other three groups, showed less sensitivity. To further investigate the reward sensitivity in the long-term trained groups from another perspective, we continuously and periodically altered the reward size for each trial. The rats of the discreet judgment group changed intertrial intervals depending on reward size, while this tendency was weaker in the uncontrolled judgment group. These results suggest that discreet judgment maintained goal-directed rat behavior, whereas uncontrolled judgment led to the development of habit-like behavior.

Collaboration


Dive into the Naofumi Suematsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge