Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naohiro Inohara is active.

Publication


Featured researches published by Naohiro Inohara.


Nature | 2001

A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease

Yasunori Ogura; Denise K. Bonen; Naohiro Inohara; Dan L. Nicolae; Felicia F. Chen; Richard Ramos; Heidi M. Britton; Thomas Moran; Reda Karaliuskas; Richard H. Duerr; Jean-Paul Achkar; Steven R. Brant; Theodore M. Bayless; Barbara S. Kirschner; Stephen B. Hanauer; Gabriel Núñez; Judy H. Cho

Crohns disease is a chronic inflammatory disorder of the gastrointestinal tract, which is thought to result from the effect of environmental factors in a genetically predisposed host. A gene location in the pericentromeric region of chromosome 16, IBD1, that contributes to susceptibility to Crohns disease has been established through multiple linkage studies, but the specific gene(s) has not been identified. NOD2, a gene that encodes a protein with homology to plant disease resistance gene products is located in the peak region of linkage on chromosome 16 (ref. 7). Here we show, by using the transmission disequilibium test and case-control analysis, that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohns disease. Wild-type NOD2 activates nuclear factor NF-κB, making it responsive to bacterial lipopolysaccharides; however, this induction was deficient in mutant NOD2. These results implicate NOD2 in susceptibility to Crohns disease, and suggest a link between an innate immune response to bacterial components and development of disease.


Journal of Biological Chemistry | 2001

Nod2, a Nod1/Apaf-1 Family Member That Is Restricted to Monocytes and Activates NF-κB

Yasunori Ogura; Naohiro Inohara; Adalberto Benito; Felicia F. Chen; Shoji Yamaoka; Gabriel Núñez

Apaf-1 and Nod1 are members of a protein family, each of which contains a caspase recruitment domain (CARD) linked to a nucleotide-binding domain, which regulate apoptosis and/or NF-κB activation. Nod2, a third member of the family, was identified. Nod2 is composed of two N-terminal CARDs, a nucleotide-binding domain, and multiple C-terminal leucine-rich repeats. Although Nod1 and Apaf-1 were broadly expressed in tissues, the expression of Nod2 was highly restricted to monocytes. Nod2 induced nuclear factor κB (NF-κB) activation, which required IKKγ and was inhibited by dominant negative mutants of IκBα, IKKα, IKKβ, and IKKγ. Nod2 interacted with the serine-threonine kinase RICK via a homophilic CARD-CARD interaction. Furthermore, NF-κB activity induced by Nod2 correlated with its ability to interact with RICK and was specifically inhibited by a truncated mutant form of RICK containing its CARD. The identification of Nod2 defines a subfamily of Apaf-1-like proteins that function through RICK to activate a NF-κB signaling pathway.


Nature Immunology | 2003

An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid

Mathias Chamaillard; Masahito Hashimoto; Yasuo Horie; Junya Masumoto; Su Qiu; Lisa Saab; Yasunori Ogura; Akiko Kawasaki; Koichi Fukase; Shoichi Kusumoto; Miguel A. Valvano; Simon J. Foster; Tak W. Mak; Gabriel Núñez; Naohiro Inohara

Nucleotide-binding oligomerization domain protein 1 (NOD1) belongs to a family that includes multiple members with NOD and leucine-rich repeats in vertebrates and plants. NOD1 has been suggested to have a role in innate immune responses, but the mechanism involved remains unknown. Here we report that NOD1 mediates the recognition of peptidoglycan derived primarily from Gram-negative bacteria. Biochemical and functional analyses using highly purified and synthetic compounds indicate that the core structure recognized by NOD1 is a dipeptide, γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP). Murine macrophages deficient in NOD1 did not secrete cytokines in response to synthetic iE-DAP and did not prime the lipopolysaccharide response. Thus, NOD1 mediates selective recognition of bacteria through detection of iE-DAP-containing peptidoglycan.*Note: In the version of this article initially published online, one authors first name and last name were reversed. The correct author name should be Su Qiu. This mistake has been corrected for the HTML and print versions of the article.


Oncogene | 1998

Caspases: the proteases of the apoptotic pathway

Gabriel Núñez; Mary A. Benedict; Yuanmimg Hu; Naohiro Inohara

Apoptosis, a morphologically defined form of physiological cell death, is implemented by a death machinery whose executionary arm is a family of cysteine proteases called caspases. These death proteases are part of a proteolytic caspase cascade that is activated by diverse apoptotic stimuli from outside and inside of the cell. The cell death machinery is evolutionarily conserved and composed of caspases and their regulatory components that include activators and repressors. These key components of the death machinery are linked to signaling pathways that are activated by either ligation of death receptors expressed at the cell surface or intracellular death signals. Caspases are normally present in the cell as proenzymes that require limited proteolysis for activation of enzymatic activity. Recent studies suggest that the basic mechanism of caspase activation is conserved in evolution. Binding of initiator caspase precursors to activator molecules appears to promote procaspase oligomerization and autoactivation. Enzymatic activation of initiator caspases leads to proteolytic activation of downstream (effector) caspases and cleavage of a number of vital proteins, resulting in the orderly demise and removal of the cell.


Nature Immunology | 2006

Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages

Luigi Franchi; Amal O. Amer; Mathilde Body-Malapel; Thirumala-Devi Kanneganti; Nesrin Özören; Rajesh Jagirdar; Naohiro Inohara; Peter Vandenabeele; John Bertin; Anthony J. Coyle; Ethan P. Grant; Gabriel Núñez

Gram-negative bacteria that replicate in the cytosol of mammalian macrophages can activate a signaling pathway leading to caspase-1 cleavage and secretion of interleukin 1β, a powerful host response factor. Ipaf, a cytosolic pattern-recognition receptor in the family of nucleotide-binding oligomerization domain–leucine-rich repeat proteins, is critical in such a response to salmonella infection, but the mechanism of how Ipaf is activated by the bacterium remains poorly understood. Here we demonstrate that salmonella strains either lacking flagellin or expressing mutant flagellin were deficient in activation of caspase-1 and in interleukin 1β secretion, although transcription factor NF-κB–dependent production of interleukin 6 or the chemokine MCP-1 was unimpaired. Delivery of flagellin to the macrophage cytosol induced Ipaf-dependent activation of caspase-1 that was independent of Toll-like receptor 5, required for recognition of extracellular flagellin. In macrophages made tolerant by previous exposure to lipopolysaccharide, which abrogates activation of NF-κB and mitogen-activated protein kinases, salmonella infection still activated caspase-1. Thus, detection of flagellin through Ipaf induces caspase-1 activation independently of Toll-like receptor 5 in salmonella-infected and lipopolysaccharide-tolerized macrophages.


Nature Reviews Immunology | 2003

NODs: intracellular proteins involved in inflammation and apoptosis.

Naohiro Inohara; Gabriel Núñez

NOD (nucleotide-binding oligomerization domain) proteins are members of a family that includes the apoptosis regulator APAF1 (apoptotic protease activating factor 1), mammalian NOD-LRR (leucine-rich repeat) proteins and plant disease-resistance gene products. Several NOD proteins have been implicated in the induction of nuclear factor-κB (NF-κB) activity and in the activation of caspases. Two members of the NOD family, NOD1 and NOD2, mediate the recognition of specific bacterial components. Notably, genetic variation in the genes encoding the NOD proteins NOD2, cryopyrin and CIITA (MHC class II transactivator) in humans and Naip5 (neuronal apoptosis inhibitory protein 5) in mice is associated with inflammatory disease or increased susceptibility to bacterial infections. Mammalian NOD proteins seem to function as cytosolic sensors for the induction of apoptosis, as well as for innate recognition of microorganisms and regulation of inflammatory responses.


Nature | 2002

RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems

Koichi S. Kobayashi; Naohiro Inohara; Lorraine D. Hernandez; Jorge E. Galán; Gabriel Núñez; Charles A. Janeway; Ruslan Medzhitov; Richard A. Flavell

The immune system consists of two evolutionarily different but closely related responses, innate immunity and adaptive immunity. Each of these responses has characteristic receptors—Toll-like receptors (TLRs) for innate immunity and antigen-specific receptors for adaptive immunity. Here we show that the caspase recruitment domain (CARD)-containing serine/threonine kinase Rip2 (also known as RICK, CARDIAK, CCK and Ripk2) transduces signals from receptors of both immune responses. Rip2 was recruited to TLR2 signalling complexes after ligand stimulation. Moreover, cytokine production in Rip2-deficient cells was reduced on stimulation of TLRs with lipopolysaccharide, peptidoglycan and double-stranded RNA, but not with bacterial DNA, indicating that Rip2 is downstream of TLR2/3/4 but not TLR9. Rip2-deficient cells were also hyporesponsive to signalling through interleukin (IL)-1 and IL-18 receptors, and deficient for signalling through Nod proteins—molecules also implicated in the innate immune response. Furthermore, Rip2-deficient T cells showed severely reduced NF-κB activation, IL-2 production and proliferation on T-cell-receptor (TCR) engagement, and impaired differentiation to T-helper subtype 1 (TH1) cells, indicating that Rip2 is required for optimal TCR signalling and T-cell differentiation. Rip2 is therefore a signal transducer and integrator of signals for both the innate and adaptive immune systems.


Journal of Biological Chemistry | 1999

Nod1, an Apaf-1-like Activator of Caspase-9 and Nuclear Factor-κB

Naohiro Inohara; Takeyoshi Koseki; Luis del Peso; Yuanming Hu; Christina S.K. Yee; Shu Chen; Roberto Carrio; Jesus Merino; Ding Liu; Jian Ni; Gabriel Núñez

Ced-4 and Apaf-1 belong to a major class of apoptosis regulators that contain caspase-recruitment (CARD) and nucleotide-binding oligomerization domains. Nod1, a protein with an NH2-terminal CARD-linked to a nucleotide-binding domain and a COOH-terminal segment with multiple leucine-rich repeats, was identified. Nod-1 was found to bind to multiple caspases with long prodomains, but specifically activated caspase-9 and promoted caspase-9-induced apoptosis. As reported for Apaf-1, Nod1 required both the CARD and P-loop for function. Unlike Apaf-1, Nod1 induced activation of nuclear factor-kappa-B (NF-κB) and bound RICK, a CARD-containing kinase that also induces NF-κB activation. Nod1 mutants inhibited NF-κB activity induced by RICK, but not that resulting from tumor necrosis factor-α stimulation. Thus, Nod1 is a leucine-rich repeat-containing Apaf-1-like molecule that can regulate both apoptosis and NF-κB activation pathways.


Journal of Biological Chemistry | 2006

Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA

Thirumala-Devi Kanneganti; Mathilde Body-Malapel; Amal O. Amer; Jong Hwan Park; Joel Whitfield; Luigi Franchi; Zenobia F. Taraporewala; David Miller; John T. Patton; Naohiro Inohara; Gabriel Núñez

Viral infection induces the production of interleukin (IL)-1β and IL-18 in macrophages through the activation of caspase-1, but the mechanism by which host cells sense viruses to induce caspase-1 activation is unknown. In this report, we have identified a signaling pathway leading to caspase-1 activation that is induced by double-stranded RNA (dsRNA) and viral infection that is mediated by Cryopyrin/Nalp3. Stimulation of macrophages with dsRNA, viral RNA, or its analog poly(I:C) induced the secretion of IL-1β and IL-18 in a cryopyrin-dependent manner. Consistently, caspase-1 activation triggered by poly(I:C), dsRNA, and viral RNA was abrogated in macrophages lacking cryopyrin or the adaptor ASC (apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain) but proceeded normally in macrophages deficient in Toll-like receptor 3 or 7. We have also shown that infection with Sendai and influenza viruses activates the cryopyrin inflammasome. Finally, cryopyrin was required for IL-1β production in response to poly(I:C) in vivo. These results identify a mechanism mediated by cryopyrin and ASC that links dsRNA and viral infection to caspase-1 activation resulting in IL-1β and IL-18 production.


Immunity | 2008

The NLR gene family: a standard nomenclature.

Jenny P.-Y. Ting; Ruth C. Lovering; Emad S. Alnemri; John Bertin; Jeremy M. Boss; Beckley K. Davis; Richard A. Flavell; Stephen E. Girardin; Adam Godzik; Jonathan A. Harton; Hal M. Hoffman; Jean Pierre Hugot; Naohiro Inohara; Alex MacKenzie; Lois J. Maltais; Gabriel Núñez; Yasunori Ogura; Luc A. Otten; Dana J. Philpott; John C. Reed; Walter Reith; Stefan Schreiber; Viktor Steimle; Peter A. Ward

Iimmune regulatory proteins such as CIITA, NAIP, IPAF, NOD1, NOD2, NALP1, cryopyrin/NALP3 are members of a family characterized by the presence of a nucleotide-binding domain (NBD) and leucine-rich repeats (LRR). Members of this gene family encode a protein structure similar to the NB-LRR subgroup of disease-resistance genes in plants and are involved in the sensing of pathogenic products and the regulation of cell signaling and apoptosis. Several members of this family have been associated with immunologic disorders. NOD2 for instance is associated with both Crohns disease and Blau syndrome. A variety of different names are currently used to describe this gene family, its subfamilies and individual genes, including CATERPILLER (CLR), NOD-LRR, NACHT-LRR, CARD, NALP, NOD, PAN and PYPAF, and this lack of consistency has led to a pressing need to unify the nomenclature. Consequently, we collectively propose the family designation NLR (nucleotide-binding domain and leucine-rich repeat containing) and provide unique and standardized gene designations for all family members.

Collaboration


Dive into the Naohiro Inohara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koichi Fukase

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu Chen

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge