Naohiro Kosugi
Japan Meteorological Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Naohiro Kosugi.
Tellus B | 2010
Takashi Midorikawa; Masao Ishii; Shu Saito; Daisuke Sasano; Naohiro Kosugi; Tatsuo Motoi; Hitomi Kamiya; Akira Nakadate; Kazuhiro Nemoto; Hisayuki Y. Inoue
We estimated long-term trends of ocean acidification in surface waters in latitudinal zones from 3°N to 33°N along the repeat hydrographic line at 137°E in the western North Pacific Ocean. Estimates were based on the observational records of oceanic CO2 partial pressure and related surface properties over the last two decades. The computed pH time series both for 25 yr in winter (late January.early February) and for 21 yr in summer (June.July) exhibited significant decreasing trends in the extensive subtropical to equatorial zones, with interannual variations that were larger in summer. The calculated rates of pH decrease ranged from 0.0015 to 0.0021 yr-1 (average, 0.0018 ± 0.0002 yr-1) in winter and from 0.0008 to 0.0019 yr-1 (average, 0.0013 ) 0.0005 yr-1) in summer. The thermodynamic effects of rising sea surface temperature (SST) accounted for up to 44% (average, 15%) of the trend of pH decrease in the subtropical region in winter, whereas a trend of decreasing SST slowed the pH decrease in the northern subtropical region (around 25°N) in summer. We used the results from recent trends to evaluate future possible thermodynamic changes in the upper ocean carbonate system.
Global Biogeochemical Cycles | 2015
Daisuke Sasano; Yusuke Takatani; Naohiro Kosugi; Toshiya Nakano; Takashi Midorikawa; Masao Ishii
The rate of change of dissolved oxygen (O2) concentrations was analyzed over 1987–2011 for the high-frequency repeat section along 165°E in the western North Pacific. Significant trends toward decreasing O2 were detected in the northern subtropical to subtropical-subarctic transition zones over a broad range of isopycnal horizons. On 25.3σθ between 25°N and 30°N in North Pacific Subtropical Mode Water, the rate of O2 decrease reached −0.45 ± 0.16 µmol kg−1 yr−1. It is largely attributed to a deepening of isopycnal horizons and to a reduction in oxygen solubility associated with ocean warming. In North Pacific Intermediate Water, the rate of O2 decrease was elevated (−0.44 ± 0.14 µmol kg−1 yr−1 on 26.8σθ) and was associated with net increases in apparent oxygen utilization in the source waters. On 27.3σθ in the subtropical Oxygen Minimum Layer (OML) between 32.5°N and 35°N, the rate of O2 decrease was significant (−0.22 ± 0.05 µmol kg−1 yr−1). It was likely due to the increases in westward transport of low-oxygen water. These various drivers controlling changes in O2 along the 165°E section are the same as those acting along 137°E (analyzed previously) and also account for the differences in the rate of O2 decrease between these sections. Additionally, in the tropical OML near 26.8σθ between 5°N and 10°N, significant trends toward increasing O2 were detected in both sections (+0.36 ± 0.04 µmol kg−1 yr−1 in the 165°E section). These results demonstrate that warming and circulation changes are causing multidecadal changes in dissolved O2 over wide expanses of the western North Pacific.
Journal of Oceanography | 2015
Michiyo Yamamoto-Kawai; Natsuko Kawamura; Tsuneo Ono; Naohiro Kosugi; Atsushi Kubo; Masao Ishii; Jota Kanda
From April 2011 to January 2012, seasonal variation of the aragonite saturation state (Ωar) was observed for the first time in Tokyo Bay, in order to understand the current state of ocean acidification in a highly eutrophicated bay in Japan. Ωar in the bay ranged between 1.55 and 5.12, much greater than observed in offshore waters. At the surface, Ωar was high during summer as a result of photosynthesis with some conflicting effect of freshwater input. At the bottom, Ωar was low during summer due to remineralization of organic matter. Based on an assumption that our observations represent current conditions in Tokyo Bay, it is estimated that the emission of anthropogenic CO2 has already decreased Ωar by 0.6 since the preindustrial period and will further decrease by 1.0–1.6 by the end of this century if emission of CO2 is continued at a high level [representative concentration pathway (RCP) 8.5 scenario]. With other conditions remaining the same, bottom waters of the bay will reach seasonal aragonite undersaturation by 2060–2070. However, because coastal regions have a large interannual variability, we need further observations to evaluate our estimations and future predictions presented here. Nevertheless, it should be safe to say that the larger seasonal variation in Ω causes the Tokyo Bay to reach aragonite undersaturation earlier than offshore regions and such conditions have negative consequences on the variety of calcifying organisms living in Tokyo Bay. Ocean acidification could thus give an additional stress to the ecosystem of the bay, which is now suffering from eutrophication and hypoxia.
Journal of Geophysical Research | 2014
Yusuke Takatani; Kazutaka Enyo; Yosuke Iida; Atsushi Kojima; Toshiya Nakano; Daisuke Sasano; Naohiro Kosugi; Takashi Midorikawa; T. Suzuki; Masao Ishii
Improved spatial and temporal representation of total alkalinity (TA) is expected to be an important component in monitoring changes in the oceanic carbon cycle and acidification over the coming decades. For this reason, previous authors have sought to develop and apply empirical methods to characterize TA in the surface ocean. However, there are regions such as the North Pacific that have proven difficult to successfully represent through empirical relationships based on temperature and salinity with linear regression. Here we propose a new empirical approach for reconstructing TA for the Pacific basin using sea surface salinity and sea surface dynamic height (SSDH). We propose five zones of the Pacific basin where the empirical relationships are applied separately. The root-mean-square error of the fittings of these equations to the measured TA is 7.8 μmol kg−1. The SSDH-based empirical equation helps especially to represent the TA in the North Pacific subtropical-subarctic frontal zone where salinity-normalized TA as well as other oceanographic variables exhibits a large meridional gradient and sizeable formation of Central Mode Water and Subtropical Mode Water occurs.
Nature Climate Change | 2017
Chen-Tung Arthur Chen; Hon-Kit Lui; Chia-Han Hsieh; Tetsuo Yanagi; Naohiro Kosugi; Masao Ishii; Gwo-Ching Gong
Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1–4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air–sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.Changes in deep-water ventilation could potentially cause acidification from organic matter breakdown. The Sea of Japan has an acidification rate 27% higher at depth than at the surface, showing how reduced ventilation from warming could impact the deep ocean.
Tellus B | 2016
Shigeyuki Ishidoya; Hiroshi Uchida; Daisuke Sasano; Naohiro Kosugi; Shoichi Taguchi; Masao Ishii; Shinji Morimoto; Yasunori Tohjima; Shigeto Nishino; Shohei Murayama; Shuji Aoki; Kentaro Ishijima; Ryo Fujita; Daisuke Goto; Takakiyo Nakazawa
Simultaneous observations of atmospheric potential oxygen (APO=O2+1.1×CO2) and air–sea O2 flux, derived from dissolved oxygen in surface seawater, were carried out onboard the research vessel MIRAI in the northern North Pacific and the Arctic Ocean in the autumns of 2012–2014. A simulation of the APO was also carried out using a three-dimensional atmospheric transport model that incorporated a monthly air–sea O2 flux climatology. By comparing the observed and simulated APO, as well as the observed and climatological air–sea O2 fluxes, it was found that the large day-to-day variation in the observed APO can be attributed to the day-to-day variation in the local air–sea O2 fluxes around the observation sites. It was also found that the average value of the observed air–sea O2 fluxes was systematically higher than that of the climatological O2 flux. This could explain the discrepancy between the observed and simulated seasonal APO cycles widely seen at various northern hemispheric observational sites in the fall season.
Journal of Geophysical Research | 2016
Naohiro Kosugi; Daisuke Sasano; Masao Ishii; Kazutaka Enyo; Shu Saito
We made comprehensive surface water CO2 chemistry observations in the Japan Sea during each autumn from 2010 to 2014. The partial pressure of CO2 (pCO2) in surface water, 312–329 μatm, was 10–30 μatm lower in the Japan Sea than in the same latitude range of the western North Pacific adjacent to Japan. According to the sensitivity analysis of pCO2, the lower pCO2 in the Japan Sea was primarily attributable to a large seasonal decrease of pCO2 associated with strong cooling in autumn, particularly in the northern Japan Sea. In contrast, the lower pCO2 in relatively warm, fresh water in the southern Japan Sea was attributable to not only the thermodynamic effect of the temperature changes but also high total alkalinity. This alkalinity had its origin in Changjiang River and was transported by Changjiang diluted water (CDW) which seasonally runs into the Japan Sea from the East China Sea. The input of total alkalinity through CDW also elevated the saturation state of calcium carbonate minerals and mitigated the effects of anthropogenic ocean acidification, at least during autumn. These biogeochemical impacts of CDW in the Japan Sea last until November, although the inflow from the East China Sea to the Japan Sea almost ceases by the end of September. The long duration of the high saturation state of calcium carbonate benefits calcareous marine organisms. This article is protected by copyright. All rights reserved.
Journal of Geophysical Research | 2011
Masao Ishii; Naohiro Kosugi; Daisuke Sasano; Shu Saito; Takashi Midorikawa; Hisayuki Y. Inoue
Deep Sea Research Part I: Oceanographic Research Papers | 2012
Takashi Midorikawa; Hisayuki Y. Inoue; Masao Ishii; Daisuke Sasano; Naohiro Kosugi; Gen Hashida; S. Nakaoka; T. Suzuki
Journal of Oceanography | 2015
Eitarou Oka; Bo Qiu; Yusuke Takatani; Kazutaka Enyo; Daisuke Sasano; Naohiro Kosugi; Masao Ishii; Toshiya Nakano; Toshio Suga