Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoji Yubuki is active.

Publication


Featured researches published by Naoji Yubuki.


Extremophiles | 2007

Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures

Kiyotaka Takishita; Naoji Yubuki; Natsuki Kakizoe; Yuji Inagaki; Tadashi Maruyama

Recent culture-independent surveys of eukaryotic small-subunit ribosomal DNA (SSU rDNA) from many environments have unveiled unexpectedly high diversity of microbial eukaryotes (microeukaryotes) at various taxonomic levels. However, such surveys were most probably biased by various technical difficulties, resulting in underestimation of microeukaryotic diversity. In the present study on oxygen-depleted sediment from a deep-sea methane cold seep of Sagami Bay, Japan, we surveyed the diversity of eukaryotic rDNA in raw sediment samples and in two enrichment cultures. More than half of all clones recovered from the raw sediment samples were of the basidiomycetous fungus Cryptococcus curvatus. Among other clones, phylotypes of eukaryotic parasites, such as Apicomplexa, Ichthyosporea, and Phytomyxea, were identified. On the other hand, we observed a marked difference in phylotype composition in the enrichment samples. Several phylotypes belonging to heterotrophic stramenopiles were frequently found in one enrichment culture, while a phylotype of Excavata previously detected at a deep-sea hydrothermal vent dominated the other. We successfully established a clonal culture of this excavate flagellate. Since these phylotypes were not identified in the raw sediment samples, the approach incorporating a cultivation step successfully found at least a fraction of the “hidden” microeukaryotic diversity in the environment examined.


Environmental Microbiology | 2010

A wide diversity of previously undetected free‐living relatives of diplomonads isolated from marine/saline habitats

Martin Kolisko; Jeffrey D. Silberman; Ivan Čepička; Naoji Yubuki; Kiyotaka Takishita; Akinori Yabuki; Brian S. Leander; Isao Inouye; Yuji Inagaki; Andrew J. Roger; Alastair G. B. Simpson

Over the last 15 years classical culturing and environmental PCR techniques have revealed a modest number of genuinely new major lineages of protists; however, some new groups have greatly influenced our understanding of eukaryote evolution. We used culturing techniques to examine the diversity of free-living protists that are relatives of diplomonads and retortamonads, a group of evolutionary and parasitological importance. Until recently, a single organism, Carpediemonas membranifera, was the only representative of this region of the tree. We report 18 new isolates of Carpediemonas-like organisms (CLOs) from anoxic marine sediments. Only one is a previously cultured species. Eleven isolates are conspecific and were classified within a new genus, Kipferlia n. gen. The remaining isolates include representatives of three other lineages that likely represent additional undescribed genera (at least). Small-subunit ribosomal RNA gene phylogenies show that CLOs form a cloud of six major clades basal to the diplomonad-retortamonad grouping (i.e. each of the six CLO clades is potentially as phylogenetically distinct as diplomonads and retortamonads). CLOs will be valuable for tracing the evolution of diplomonad cellular features, for example, their extremely reduced mitochondrial organelles. It is striking that the majority of CLO diversity was undetected by previous light microscopy surveys and environmental PCR studies, even though they inhabit a commonly sampled environment. There is no reason to assume this is a unique situation - it is likely that undersampling at the level of major lineages is still widespread for protists.


The ISME Journal | 2011

Identity of epibiotic bacteria on symbiontid euglenozoans in O2-depleted marine sediments: evidence for symbiont and host co-evolution.

Virginia P. Edgcomb; Susana A. Breglia; Naoji Yubuki; David J. Beaudoin; David J. Patterson; Brian S. Leander; Joan M. Bernhard

A distinct subgroup of euglenozoans, referred to as the ‘Symbiontida,’ has been described from oxygen-depleted and sulfidic marine environments. By definition, all members of this group carry epibionts that are intimately associated with underlying mitochondrion-derived organelles beneath the surface of the hosts. We have used molecular phylogenetic and ultrastructural evidence to identify the rod-shaped epibionts of the two members of this group, Calkinsia aureus and B.bacati, hand-picked from the sediments of two separate oxygen-depleted, sulfidic environments. We identify their epibionts as closely related sulfur or sulfide-oxidizing members of the epsilon proteobacteria. The epsilon proteobacteria generally have a significant role in deep-sea habitats as primary colonizers, primary producers and/or in symbiotic associations. The epibionts likely fulfill a role in detoxifying the immediate surrounding environment for these two different hosts. The nearly identical rod-shaped epibionts on these two symbiontid hosts provides evidence for a co-evolutionary history between these two sets of partners. This hypothesis is supported by congruent tree topologies inferred from 18S and 16S rDNA from the hosts and bacterial epibionts, respectively. The eukaryotic hosts likely serve as a motile substrate that delivers the epibionts to the ideal locations with respect to the oxic/anoxic interface, whereby their growth rates can be maximized, perhaps also allowing the host to cultivate a food source. Because symbiontid isolates and additional small subunit rDNA gene sequences from this clade have now been recovered from many locations worldwide, the Symbiontida are likely more widespread and diverse than presently known.


Journal of Eukaryotic Microbiology | 2007

Ultrastructure and Ribosomal RNA Phylogeny of the Free-Living Heterotrophic Flagellate Dysnectes brevis n. gen., n. sp., a New Member of the Fornicata

Naoji Yubuki; Yuji Inagaki; Takeshi Nakayama; Isao Inouye

ABSTRACT. Dysnectes brevis n. gen., n. sp., a free‐living heterotrophic flagellate that grows under microaerophilic conditions possesses two flagella. The posterior one lies in a ventral feeding groove, suggesting that this flagellate is an excavate. Our detailed electron microscopic observations revealed that D. brevis possesses all the key ultrastructural characters considered typical of Excavata. Among the 10 excavate groups previously recognized, D. brevis displays an evolutionary affinity to members of the Fornicata (i.e. Carpediemonas, retortamonads, and diplomonads). Firstly, a strong D. brevis−Fornicata affinity was recovered in the phylogenetic analyses of small subunit ribosomal RNA (SSU rRNA) sequences, albeit the internal branching pattern of the D. brevis+Fornicata clade was not resolved with confidence. Corresponding to the SSU rRNA phylogeny, D. brevis and the Fornicata shared the following components of the flagellar apparatus: the arched B fiber bridging the right root; a posterior basal body; and a left root. Combining both morphological and molecular phylogenetic analyses, D. brevis is classified as a new free‐living excavate in the Fornicata incertae sedis.


Protist | 2012

Diversity, evolution and molecular systematics of the Psalteriomonadidae, the main lineage of anaerobic/microaerophilic heteroloboseans (excavata: discoba).

Tomáš Pánek; Jeffrey D. Silberman; Naoji Yubuki; Brian S. Leander; Ivan Čepička

We isolated and cultivated 31 strains of free-living heterolobosean flagellates and amoebae from freshwater, brackish, and marine sediments with low concentrations of oxygen. Phylogenetic analysis of small subunit (SSU) rDNA showed that the strains constitute a single clade, the Psalteriomonadidae. According to combined light-microscopic morphology plus molecular phylogeny, our isolates belong to seven species and five genera, from which three species and two genera are new. In addition, previously described anaerobic species Percolomonas descissus and Vahlkampfia anaerobica are transferred to the Psalteriomonadidae. We identified a flagellate stage of Monopylocystis visvesvarai which was reported to produce only amoebae. Two environmental sequences previously obtained from acidic environments belong to the Psalteriomonadidae as well, suggesting a broad ecological importance of the Psalteriomonadidae. The ultrastructure of two psalteriomonadid species was also studied. Unifying features of the Psalteriomonadidae are acristate mitochondrial derivates, flagellates with a ventral groove and four flagella, and a harp-like structure in the mastigont. A new overall classification of the Psalteriomonadidae is proposed. Our data show that the Psalteriomonadidae are much more diverse than previously thought and constitute the main anaerobic lineage within the Heterolobosea.


Journal of Eukaryotic Microbiology | 2011

Tsukubamonas globosa n. gen., n. sp., a novel excavate flagellate possibly holding a key for the early evolution in "Discoba".

Akinori Yabuki; Takeshi Nakayama; Naoji Yubuki; Tetsuo Hashimoto; Ken-ichiro Ishida; Yuji Inagaki

ABSTRACT. We report the ultrastructure and phylogenetic position of a free‐living heterotrophic flagellate, Tsukubamonas globosa n. gen., n. sp. This flagellate was isolated from a pond in the University of Tsukuba, Japan. Under light microscopy, the spherical vegetative cells were naked and highly vacuolated, and always swam with rotating motion. Electron microscopic observations revealed that T. globosa possessed a ventral feeding groove, which is one of the hallmark characteristics of the supergroup Excavata. The position of T. globosa was unresolved in the small subunit ribosomal RNA phylogeny. On the other hand, a multigene phylogeny using α‐tubulin, β‐tubulin, actin, heat shock protein 90, and translation elongation factor 2 robustly united T. globosa with members of the “Discoba” clade of Excavata, composed of jakobids, euglenozoans, and heteroloboseans, although the precise position of T. globosa in this clade remained unresolved. Our detailed morphological comparisons elucidated that T. globosa possessed a novel set of morphological features, and could not be classified into any taxa in the Discoba clade. Instead we classified T. globosa into Tsukubamonadidae n. fam. under Tsukubamonadida n. ord.


Protist | 2010

Ultrastructure and Molecular Phylogenetic Position of a Novel Phagotrophic Stramenopile from Low Oxygen Environments: Rictus lutensis gen. et sp. nov. (Bicosoecida, incertae sedis)

Naoji Yubuki; Brian S. Leander; Jeffrey D. Silberman

A novel free free-living phagotrophic flagellate, Rictus lutensis gen. et sp. nov., with two heterodynamic flagella, a permanent cytostome and a cytopharynx was isolated from muddy, low oxygen coastal sediments in Cape Cod, MA, USA. We cultivated and characterized this flagellate with transmission electron microscopy, scanning electron microscopy and molecular phylogenetic analyses inferred from small subunit (SSU) rDNA sequences. These data demonstrated that this organism has the key ultrastructural characters of the Bicosoecida, including similar transitional zones and a similar overall flagellar apparatus consisting of an x fiber and an L-shape microtubular root 2 involved in food capture. Although the molecular phylogenetic analyses were concordant with the ultrastructural data in placing R. lutensis with the bicosoecid clade, the internal position of this relatively divergent sequence within the clade was not resolved. Therefore, we interpret R. lutensis gen. et sp. nov. as a novel bicosoecid incertae sedis.


Journal of Eukaryotic Microbiology | 2014

A resurgence in field research is essential to better understand the diversity, ecology, and evolution of microbial eukaryotes.

Thierry J. Heger; Virginia P. Edgcomb; Eunsoo Kim; Julius Lukeš; Brian S. Leander; Naoji Yubuki

The discovery and characterization of protist communities from diverse environments are crucial for understanding the overall evolutionary history of life on earth. However, major questions about the diversity, ecology, and evolutionary history of protists remain unanswered, notably because data obtained from natural protist communities, especially of heterotrophic species, remain limited. In this review, we discuss the challenges associated with “field protistology”, defined here as the exploration, characterization, and interpretation of microbial eukaryotic diversity within the context of natural environments or field experiments, and provide suggestions to help fill this important gap in knowledge. We also argue that increased efforts in field studies that combine molecular and microscopical methods offer the most promising path toward (1) the discovery of new lineages that expand the tree of eukaryotes; (2) the recognition of novel evolutionary patterns and processes; (3) the untangling of ecological interactions and functions, and their roles in larger ecosystem processes; and (4) the evaluation of protist adaptations to a changing climate.


European Journal of Protistology | 2013

Reconstruction of the feeding apparatus in Postgaardi mariagerensis provides evidence for character evolution within the Symbiontida (Euglenozoa)

Naoji Yubuki; Alastair G. B. Simpson; Brian S. Leander

Microbial eukaryotes living in low oxygen environments often have novel physiological and morphological features that facilitate symbiotic relationships with bacteria and other means for acquiring nutrients. Comparative studies of these features provide evidence for phylogenetic relationships and evolutionary history. Postgaardi mariagerensis, for instance, is a euglenozoan that lives in low oxygen environments and is enveloped by episymbiotic bacteria. The general ultrastructure of P. mariagerensis was described more than a decade ago and no further studies have been carried out since, mainly because these cells are difficult to obtain. Postgaardi lacks the diagnostic features found in other major euglenozoan lineages (e.g., pellicle strips and kinetoplast-like mitochondrial inclusions) and no molecular data are available, so the phylogenetic position of this genus within the Euglenozoa remains unclear. We re-examined and reconstructed the ultrastructural organization of the feeding apparatus in Postgaardi by serial sectioning an existing block of resin-embedded cells. Postgaardi possesses distinctive finger-like projections within the feeding apparatus; this system has only been found in one other highly distinctive flagellate, namely the symbiontid Calkinsia. Detailed comparisons of the cytoskeleton in Postgaardi and in two symbiontids, Calkinsia and Bihospites, provided new evidence for phylogenetic relationships and character evolution in all three genera.


Protist | 2010

Ultrastructure and 18S rDNA Phylogeny of Apoikia lindahlii comb. nov. (Chrysophyceae) and its Epibiontic Protists, Filos agilis gen. et sp. nov. (Bicosoecida) and Nanos amicus gen. et sp. nov. (Bicosoecida)

Eunsoo Kim; Naoji Yubuki; Brian S. Leander; Linda E. Graham

Three heterotrophic stramenopiles--Apoikia lindahlii comb. nov. (Chrysophyceae), Filos agilis gen. et sp. nov. (Bicosoecida), and Nanos amicus gen. et sp. nov. (Bicosoecida)--were isolated from acidic peat bogs. The biflagellate A. lindahlii forms loose irregular colonies from which swimming cells may detach, and produces extensive mucilaginous material containing bacterial cells. Phylogenetic analyses of small subunit rDNA sequences demonstrated that A. lindahlii branches within the Chrysophyceae. While A. lindahlii is an obligate heterotroph, ultrastructural observations revealed a leukoplast in the perinuclear region. The pico-sized uniflagellates F. agilis and N. amicus were isolated from separate lakes and within the mucilage of A. lindahlii, suggesting their close associations in natural habitats. In SSU rDNA phylogenies, F. agilis and N. amicus were closely related to the bicosoecids Adriamonas, Siluania, Paramonas, and Nerada. While Filos, Nanos, and Siluania are similar in light microscopic features, their SSU rDNA gene sequences differed significantly (>8% differences) and were not monophyletic. Both F. agilis and N. amicus have a cytostome/cytopharynx particle ingestion apparatus. Bacterial cells and material similar to the mucilage of A. lindahlii occurred within the food vacuole of F. agilis and N. amicus. The nature of association between A. lindahlii and its epibiontic bicosoecids is discussed.

Collaboration


Dive into the Naoji Yubuki's collaboration.

Top Co-Authors

Avatar

Brian S. Leander

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akinori Yabuki

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Čepička

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mona Hoppenrath

Canadian Institute for Advanced Research

View shared research outputs
Top Co-Authors

Avatar

Susana A. Breglia

Canadian Institute for Advanced Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge