Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoki Goshima is active.

Publication


Featured researches published by Naoki Goshima.


Nature | 2011

Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1

Momoko Maekawa; Kei Yamaguchi; Tomonori Nakamura; Ran Shibukawa; Ikumi Kodanaka; Tomoko Ichisaka; Yoshifumi Kawamura; Hiromi Mochizuki; Naoki Goshima; Shinya Yamanaka

Induced pluripotent stem cells (iPSCs) are generated from somatic cells by the transgenic expression of three transcription factors collectively called OSK: Oct3/4 (also called Pou5f1), Sox2 and Klf4. However, the conversion to iPSCs is inefficient. The proto-oncogene Myc enhances the efficiency of iPSC generation by OSK but it also increases the tumorigenicity of the resulting iPSCs. Here we show that the Gli-like transcription factor Glis1 (Glis family zinc finger 1) markedly enhances the generation of iPSCs from both mouse and human fibroblasts when it is expressed together with OSK. Mouse iPSCs generated using this combination of transcription factors can form germline-competent chimaeras. Glis1 is enriched in unfertilized oocytes and in embryos at the one-cell stage. DNA microarray analyses show that Glis1 promotes multiple pro-reprogramming pathways, including Myc, Nanog, Lin28, Wnt, Essrb and the mesenchymal–epithelial transition. These results therefore show that Glis1 effectively promotes the direct reprogramming of somatic cells during iPSC generation.


Stem Cells | 2013

An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells.

Keisuke Okita; Tatsuya Yamakawa; Yasuko Matsumura; Yoshiko Sato; Naoki Amano; Akira Watanabe; Naoki Goshima; Shinya Yamanaka

The generation of induced pluripotent stem cells (iPSCs) provides the opportunity to use patient‐specific somatic cells, which are a valuable source for disease modeling and drug discovery. To promote research involving these cells, it is important to make iPSCs from easily accessible and less invasive tissues, like blood. We have recently reported the efficient generation of human iPSCs from adult fibroblasts using a combination of plasmids encoding OCT3/4, SOX2, KLF4, L‐MYC, LIN28, and shRNA for TP53. We herein report a modified protocol enabling efficient iPSC induction from CD34+ cord blood cells and from peripheral blood isolated from healthy donors using these plasmid vectors. The original plasmid mixture could induce iPSCs; however, the efficiency was low. The addition of EBNA1, an essential factor for episomal amplification of the vectors, by an extra plasmid greatly increased the efficiency of iPSC induction, especially when the induction was performed from αβT cells. This improvement enabled the establishment of blood‐derived iPSCs from seven healthy donors ranging in age from their 20s to their 60s. This induction method will be useful for the derivation of patient‐specific integration‐free iPSCs and would also be applicable to the generation of clinical‐grade iPSCs in the future. STEM CELLS2013;31:458–466


Genes to Cells | 2006

Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP‐A chromatin of human cells

Hiroshi Izuta; Masashi Ikeno; Nobutaka Suzuki; Takeshi Tomonaga; Naohito Nozaki; Chikashi Obuse; Yasutomo Kisu; Naoki Goshima; Fumio Nomura; Nobuo Nomura; Kinya Yoda

The centromere is a chromatin structure essential for correct segregation of sister chromatids, and defects in this region often lead to aneuploidy and cancer. We have previously reported purification of the interphase centromere complex (ICEN) from HeLa cells, and have demonstrated the presence of 40 proteins (ICEN1–40), along with CENP‐A, ‐B, ‐C, ‐H and hMis6, by proteomic analysis. Here we report analysis of seven ICEN components with unknown function. Centromere localization of EGFP‐tagged ICEN22, 24, 32, 33, 36, 37 and 39 was observed in transformant cells. Depletion of each of these proteins by short RNA interference produced abnormal metaphase cells carrying misaligned chromosomes and also produced cells containing aneuploid chromosomes, implying that these ICEN proteins take part in kinetochore functions. Interestingly, in the ICEN22, 32, 33, 37 or 39 siRNA‐transfected cells, CENP‐H and hMis6 signals disappeared from all the centromeres in abnormal mitotic cells containing misaligned chromosomes. These results suggest that the seven components of the ICEN complex are predominantly localized at the centromeres and are required for kinetochore function perhaps through or not through loading of CENP‐H and hMis6 onto the centromere.


The EMBO Journal | 2014

MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

Naoto Muraoka; Hiroyuki Yamakawa; Kazutaka Miyamoto; Taketaro Sadahiro; Tomohiko Umei; Mari Isomi; Hanae Nakashima; Mizuha Akiyama; Rie Wada; Kohei Inagawa; Takahiko Nishiyama; Ruri Kaneda; Toru Fukuda; Shu Takeda; Shugo Tohyama; Hisayuki Hashimoto; Yoshifumi Kawamura; Naoki Goshima; Ryo Aeba; Hiroyuki Yamagishi; Keiichi Fukuda; Masaki Ieda

Fibroblasts can be directly reprogrammed into cardiomyocyte‐like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR‐133a (miR‐133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial‐to‐mesenchymal transition. MiR‐133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR‐133 overexpression. In contrast, overexpression of Snai1 in GMT/miR‐133‐transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR‐133‐mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR‐133/Snai1, is a key molecular roadblock during cardiac reprogramming.


The EMBO Journal | 2012

Alternative 3′‐end processing of long noncoding RNA initiates construction of nuclear paraspeckles

Takao Naganuma; Shinichi Nakagawa; Akie Tanigawa; Yasnory T.F. Sasaki; Naoki Goshima; Tetsuro Hirose

Paraspeckles are unique subnuclear structures built around a specific long noncoding RNA, NEAT1, which is comprised of two isoforms produced by alternative 3′‐end processing (NEAT1_1 and NEAT1_2). To address the precise molecular processes that lead to paraspeckle formation, we identified 35 paraspeckle proteins (PSPs), mainly by colocalization screening with a fluorescent protein‐tagged full‐length cDNA library. Most of the newly identified PSPs possessed various putative RNA‐binding domains. Subsequent RNAi analyses identified seven essential PSPs for paraspeckle formation. One of the essential PSPs, HNRNPK, appeared to affect the production of the essential NEAT1_2 isoform by negatively regulating the 3′‐end polyadenylation of the NEAT1_1 isoform. An in vitro 3′‐end processing assay revealed that HNRNPK arrested binding of the CPSF6–NUDT21 (CFIm) complex in the vicinity of the alternative polyadenylation site of NEAT1_1. In vitro binding assays showed that HNRNPK competed with CPSF6 for binding to NUDT21, which was the underlying mechanism to arrest CFIm binding by HNRNPK. This HNRNPK function led to the preferential accumulation of NEAT1_2 and initiated paraspeckle construction with multiple PSPs.


Nucleic Acids Research | 2012

LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria

Takeshi Chujo; Takayuki Ohira; Yuriko Sakaguchi; Naoki Goshima; Nobuo Nomura; Asuteka Nagao; Tsutomu Suzuki

In human mitochondria, 10 mRNAs species are generated from a long polycistronic precursor that is transcribed from the heavy chain of mitochondrial DNA, in theory yielding equal copy numbers of mRNA molecules. However, the steady-state levels of these mRNAs differ substantially. Through absolute quantification of mRNAs in HeLa cells, we show that the copy numbers of all mitochondrial mRNA species range from 6000 to 51 000 molecules per cell, indicating that mitochondria actively regulate mRNA metabolism. In addition, the copy numbers of mitochondrial mRNAs correlated with their cellular half-life. Previously, mRNAs with longer half-lives were shown to be stabilized by the LRPPRC/SLIRP complex, which we find that cotranscriptionally binds to coding sequences of mRNAs. We observed that the LRPPRC/SLIRP complex suppressed 3′ exonucleolytic mRNA degradation mediated by PNPase and SUV3. Moreover, LRPPRC promoted the polyadenylation of mRNAs mediated by mitochondrial poly(A) polymerase (MTPAP) in vitro. These findings provide a framework for understanding the molecular mechanism of mRNA metabolism in human mitochondria.


The EMBO Journal | 2007

Structural basis of the collagen-binding mode of discoidin domain receptor 2

Osamu Ichikawa; Masanori Osawa; Noritaka Nishida; Naoki Goshima; Nobuo Nomura; Ichio Shimada

Discoidin domain receptor (DDR) is a cell‐surface receptor tyrosine kinase activated by the binding of its discoidin (DS) domain to fibrillar collagen. Here, we have determined the NMR structure of the DS domain in DDR2 (DDR2‐DS domain), and identified the binding site to fibrillar collagen by transferred cross‐saturation experiments. The DDR2‐DS domain structure adopts a distorted jellyroll fold, consisting of eight β‐strands. The collagen‐binding site is formed at the interloop trench, consisting of charged residues surrounded by hydrophobic residues. The surface profile of the collagen‐binding site suggests that the DDR2‐DS domain recognizes specific sites on fibrillar collagen. This study provides a molecular basis for the collagen‐binding mode of the DDR2‐DS domain.


Journal of Cell Biology | 2015

Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles

Sven Hennig; Geraldine Kong; Taro Mannen; Agata Sadowska; Simon Kobelke; Amanda Blythe; Gavin J. Knott; K. Swaminathan Iyer; Diwei Ho; Estella A. Newcombe; Kana Hosoki; Naoki Goshima; Tetsuya Kawaguchi; Danny M. Hatters; Laura Trinkle-Mulcahy; Tetsuro Hirose; Charles S. Bond; Archa H. Fox

Paraspeckles are mammalian subnuclear bodies built on a long noncoding RNA and are enriched in RNA binding proteins with prion-like domains; two of these proteins, RBM14 and FUS, use these domains to hold paraspeckles together.


Gene | 1998

Structures of transgene loci in transgenic Arabidopsis plants obtained by particle bombardment: junction regions can bind to nuclear matrices.

Tatsuya Sawasaki; Misa Takahashi; Naoki Goshima; Hiromichi Morikawa

To clarify the molecular structure of the integration sites of transgenes, we used particle bombardment to examine the DNA sequences of transgene loci. Three transgenic Arabidopsis lines gave a single Southern hybridization band with a selectable gene as the probe. Junction regions flanked by the transgenes were cloned by the inverse polymerase chain reaction method, and the characteristics of the DNA sequences of the 10 junction regions were investigated. All but two of these were AT-rich sequences bearing motifs characteristic of a scaffold/matrix-attachment region (S/MAR). Calculations showed that seven of them should have a propensity for curvature. An assay of in-vitro binding to tobacco nuclear matrices showed that all the junction regions bound to nuclear matrices and that the two input DNAs did not bind. The 12 chromosome/transgene (CT) junctions in these three transgene loci were investigated. Cleavage sites for topoisomerase I were found at 10 of the 12, near the junction point. The other two junctions had sites within 6bp of the junction point. The sequence near one terminal of the transgene in the transgene loci was compared with that near the other terminal. Short, direct repeats consisting of 4-6bp were present within 10bp of the junction points in the sequence. We speculate that the transgene introduced by particle bombardment is delivered on AT-rich S/MAR that has a propensity for curvature, and then a nucleotide near the short, direct repeat on the transgene is joined near the cleavage sites on the genome for topoisomerase I.


Nature Communications | 2014

Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension

Kousuke Kasahara; Yoshitaka Kawakami; Tohru Kiyono; Shigenobu Yonemura; Yoshifumi Kawamura; Saho Era; Fumio Matsuzaki; Naoki Goshima; Masaki Inagaki

Primary cilia are microtubule-based sensory organelles that organize numerous key signals during developments and tissue homeostasis. Ciliary microtubule doublet, named axoneme, is grown directly from the distal end of mother centrioles through a multistep process upon cell cycle exit; however, the instructive signals that initiate these events are poorly understood. Here we show that ubiquitin-proteasome machinery removes trichoplein, a negative regulator of ciliogenesis, from mother centrioles and thereby causes Aurora-A inactivation, leading to ciliogenesis. Ciliogenesis is blocked if centriolar trichoplein is stabilized by treatment with proteasome inhibitors or by expression of non-ubiquitylatable trichoplein mutant (K50/57R). Started from two-stepped global E3 screening, we have identified KCTD17 as a substrate-adaptor for Cul3-RING E3 ligases (CRL3s) that polyubiquitylates trichoplein. Depletion of KCTD17 specifically arrests ciliogenesis at the initial step of axoneme extension through aberrant trichoplein-Aurora-A activity. Thus, CRL3-KCTD17 targets trichoplein to proteolysis to initiate the axoneme extension during ciliogenesis.

Collaboration


Dive into the Naoki Goshima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuo Nomura

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinya Yamanaka

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eriko Fukuda

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tohru Natsume

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge