Naoki Ishimori
Hokkaido University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Naoki Ishimori.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Kazue Ohmura; Naoki Ishimori; Yoshinori Ohmura; Satoshi Tokuhara; Atsushi Nozawa; Shunpei Horii; Yasuhiro Andoh; Satoshi Fujii; Kazuya Iwabuchi; Kazunori Onoé; Hiroyuki Tsutsui
Background—Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Natural killer T (NKT) cells, which integrate proinflammatory cytokines, have been demonstrated in the atherosclerotic lesions and in visceral adipose tissue. Objective—To determine whether NKT cells are involved in glucose intolerance and adipose tissue inflammation in diet-induced obese mice. Methods and Results—Male &bgr;2-microglobulin knockout (KO) mice lacking NKT cells and C57BL/6J (wild-type) mice were fed with a high-fat diet (HFD) for 13 weeks. Body weight and visceral obesity were comparable between wild-type and KO mice. However, macrophage infiltration was reduced in adipose tissue and glucose intolerance was significantly ameliorated in KO mice. To further confirm that NKT cells are involved in these abnormalities, &agr;-galactosylceramide, 0.1 &mgr;g/g body weight, which specifically activates NKT cells, was administered after 13 weeks of HFD feeding. &agr;-Galactosylceramide significantly exacerbated glucose intolerance and macrophage infiltration as well as cytokine gene expression in adipose tissue. Conclusion—NKT cells play a crucial role in the development of adipose tissue inflammation and glucose intolerance in diet-induced obesity.
American Journal of Human Genetics | 2005
Xiaosong Wang; Naoki Ishimori; Ron Korstanje; Jarod Rollins; Beverly Paigen
Susceptibility to atherosclerosis is determined by both environmental and genetic factors. Its genetic determinants have been studied by use of quantitative-trait-locus (QTL) analysis. So far, 21 atherosclerosis QTLs have been identified in the mouse: 7 in a high-fat-diet model only, 9 in a sensitized model (apolipoprotein E- or LDL [low-density lipoprotein] receptor-deficient mice) only, and 5 in both models, suggesting that different gene sets operate in each model and that a subset operates in both. Among the 27 human atherosclerosis QTLs reported, 17 (63%) are located in regions homologous (concordant) to mouse QTLs, suggesting that these mouse and human atherosclerosis QTLs have the same underlying genes. Therefore, genes regulating human atherosclerosis will be found most efficiently by first finding their orthologs in concordant mouse QTLs. Novel mouse QTL genes will be found most efficiently by using a combination of the following strategies: identifying QTLs in new crosses performed with previously unused parental strains; inducing mutations in large-scale, high-throughput mutagenesis screens; and using new genomic and bioinformatics tools. Once QTL genes are identified in mice, they can be tested in human association studies for their relevance in human atherosclerotic disease.
PLOS ONE | 2012
Masashi Satoh; Yasuhiro Andoh; Christopher Stuart Clingan; Hisako Ogura; Satoshi Fujii; Koji Eshima; Toshinori Nakayama; Masaru Taniguchi; Noriyuki Hirata; Naoki Ishimori; Hiroyuki Tsutsui; Kazunori Onoé; Kazuya Iwabuchi
The progression of obesity is accompanied by a chronic inflammatory process that involves both innate and acquired immunity. Natural killer T (NKT) cells recognize lipid antigens and are also distributed in adipose tissue. To examine the involvement of NKT cells in the development of obesity, C57BL/6 mice (wild type; WT), and two NKT-cell-deficient strains, Jα18−/− mice that lack the type I subset and CD1d−/− mice that lack both the type I and II subsets, were fed a high fat diet (HFD). CD1d−/− mice gained the least body weight with the least weight in perigonadal and brown adipose tissue as well as in the liver, compared to WT or Jα18−/− mice fed an HFD. Histologically, CD1d−/− mice had significantly smaller adipocytes and developed significantly milder hepatosteatosis than WT or Jα18−/− mice. The number of NK1.1+TCRβ+ cells in adipose tissue increased when WT mice were fed an HFD and were mostly invariant Vα14Jα18-negative. CD11b+ macrophages (Mφ) were another major subset of cells in adipose tissue infiltrates, and they were divided into F4/80high and F4/80low cells. The F4/80low-Mφ subset in adipose tissue was increased in CD1d−/− mice, and this population likely played an anti-inflammatory role. Glucose intolerance and insulin resistance in CD1d−/− mice were not aggravated as in WT or Jα18−/− mice fed an HFD, likely due to a lower grade of inflammation and adiposity. Collectively, our findings provide evidence that type II NKT cells initiate inflammation in the liver and adipose tissue and exacerbate the course of obesity that leads to insulin resistance.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2004
Naoki Ishimori; Renhua Li; Peter M. Kelmenson; Ron Korstanje; Kenneth A. Walsh; Gary A. Churchill; Kristina Forsman-Semb; Beverly Paigen
Objective—The C57BL/6 (B6) and 129 mouse inbred strains differ markedly in plasma HDL-cholesterol concentrations and atherosclerosis susceptibility after a high-fat diet consumption. To identify loci controlling these traits, we performed quantitative trait loci (QTL) analysis. Methods and Results—We fed a high-fat diet to 294 (B6x129S1/SvImJ)F2 females for 14 weeks, measured plasma HDL concentrations and size of aortic fatty-streak lesions, genotyped F2 females, and performed QTL analysis. HDL concentrations were affected by six loci:Hdlq14 and Hdlq15 on chromosome 1 (peaks cM 80 and cM 104, logarithm of odds [LOD] 5.3 and 9.7, respectively); Hdlq16 on chromosome 8 (cM 44, LOD 2.6); Hdlq17 on chromosome 9 (cM 24, LOD 2.9); Hdlq18 on chromosome 12 (cM 20, LOD 5.9); and Hdlq19 on chromosome 2 (cM 90), which interacted with Hdlq15. Atherosclerosis susceptibility was affected by five loci:Ath17 on chromosome 10 (cM 34, LOD 6.6); Ath18 on chromosome 12 (cM 16, LOD 3.7); Ath19 (chromosome 11, cM 60), which interacted with Ath18; and Ath20 (chromosome 10, cM 10), which interacted with Ath21 (chromosome 12, cM 50). Conclusions—We identified six loci for HDL and five loci for atherosclerosis susceptibility in a (B6x129S1/SvImJ)F2 intercross.
Immunology | 2001
Keiko Watano; Kazuya Iwabuchi; Satoshi Fujii; Naoki Ishimori; Shinya Mitsuhashi; Manabu Ato; Akira Kitabatake; Kazunori Onoé
Mouse allograft inflammatory factor‐1 (AIF‐1) cDNA was cloned and the AIF‐1‐specific monoclonal antibodies were established to examine its tissue distribution. The mouse AIF‐1 was highly conserved among all reported AIF‐1 from a variety of species, from invertebrates to mammals, and the cloned cDNA was in good accordance with putative expressed regions of genomic sequences in the mouse major histocompatibility complex (MHC) class III region. The messages of mouse AIF‐1 were abundantly expressed in the testis, moderately in the spleen and lymph nodes and slightly in the liver and thymus of normal BALB/c mice. Immunohistological examination revealed that differentiating germ cells in the testis and presumably macrophages in the red pulp of the spleen were positive for AIF‐1. To analyse the function of the AIF‐1, a macrophage cell line, RAW 264.7, was transfected with mouse AIF‐1 cDNA. Upon stimulation with bacterial lipopolysaccharide, the transfectants that overexpressed AIF‐1 showed marked morphological changes and produced significantly large amounts of interleukin (IL)‐6, IL‐10 and IL‐12p40 but not IL‐12p70 compared with control cells. No difference was noted in production of tumour necrosis factor‐α, transforming growth factor‐β1 and IL‐1α. These results suggest that AIF‐1 plays an important role in cells of a monocyte/macrophage lineage upon stimulation with inflammatory stimuli by augmenting particular cytokine production.
Circulation | 2001
A. K. M. Tarikuz Zaman; Satoshi Fujii; Hirotumi Sawa; Daisuke Goto; Naoki Ishimori; Keiko Watano; Takeaki Kaneko; Tomoo Furumoto; Taeko Sugawara; Ichiro Sakuma; Akira Kitabatake; Burton E. Sobel
Background—Obesity and insulin resistance are associated with accelerated macrovascular and microvascular coronary disease, cardiomyopathic phenomena, and increased concentrations and activity in blood of plasminogen activator inhibitor type 1 (PAI-1), the primary physiological inhibitor of fibrinolysis. Methods and Results—To determine whether hypofibrinolysis in blood and tissues and its potential sequelae could be attenuated pharmacologically, we studied genetically modified obese mice. By 10 weeks of age, obese mice exhibited increases in left ventricular weight and glucose and immunoreactive insulin in blood. PAI-1 activity in blood measured spectrophotometrically was significantly elevated as well. The difference compared with values in lean controls widened by 20 weeks of age. Perivascular fibrosis in coronary arterioles and small coronary arteries was evident in obese mice 10 and 20 weeks of age, paralleling increases in PAI-1 and tissue factor expression evident by immunohistochemical image analysis, in situ hybridization, and reverse transcription-polymerase chain reaction. Inhibition of ACE activity initiated in obese mice 10 weeks of age and continued for 20 weeks arrested the increase in PAI-1 activity in blood and in cardiac PAI-1 and tissue factor mRNA as well as coronary perivascular fibrosis. Conclusions—Thus, inhibition of proteo(fibrino)lysis and augmented tissue factor expression in the heart precede and may contribute to the coronary perivascular fibrosis seen with obesity and insulin resistance. Furthermore, inhibition of ACE activity can attenuate all 3 phenomena.
Journal of Bone and Mineral Research | 2005
Naoki Ishimori; Renhua Li; Kenneth A. Walsh; Ron Korstanje; Jarod Rollins; Petko M. Petkov; Mathew T. Pletcher; Tim Wiltshire; Leah Rae Donahue; Clifford J. Rosen; Wesley G. Beamer; Gary A. Churchill; Beverly Paigen
BMD is highly heritable; however, little is known about the genes. To identify loci controlling BMD, we conducted a QTL analysis in a (B6 × 129) F2 population of mice. We report on additional QTLs and also narrow one QTL by combining the data from multiple crosses and through haplotype analysis.
Circulation Research | 2012
Mochamad Ali Sobirin; Shintaro Kinugawa; Masashige Takahashi; Arata Fukushima; Tsuneaki Homma; Taisuke Ono; Kagami Hirabayashi; Tadashi Suga; Putri Azalia; Shingo Takada; Masaru Taniguchi; Toshinori Nakayama; Naoki Ishimori; Kazuya Iwabuchi; Hiroyuki Tsutsui
Rationale: Chronic inflammation in the myocardium is involved in the development of left ventricular (LV) remodeling and failure after myocardial infarction (MI). Invariant natural killer T (iNKT) cells have been shown to produce inflammatory cytokines and orchestrate tissue inflammation. However, no previous studies have determined the pathophysiological role of iNKT cells in post-MI LV remodeling. Objective: The purpose of this study was to examine whether the activation of iNKT cells might affect the development of LV remodeling and failure. Methods and Results: After creation of MI, mice received the injection of either &agr;-galactosylceramide (&agr;GC; n=27), the activator of iNKT cells, or phosphate-buffered saline (n=31) 1 and 4 days after surgery, and were followed during 28 days. Survival rate was significantly higher in MI+&agr;GC than MI+PBS (59% versus 32%, P<0.05). LV cavity dilatation and dysfunction were significantly attenuated in MI+&agr;GC, despite comparable infarct size, accompanied by a decrease in myocyte hypertrophy, interstitial fibrosis, and apoptosis. The infiltration of iNKT cells were increased during early phase in noninfarcted LV from MI and &agr;GC further enhanced them. It also enhanced LV interleukin (IL)-10 gene expression at 7 days, which persisted until 28 days. AntienIL-10 receptor antibody abrogated these protective effects of &agr;GC on MI remodeling. The administration of &agr;GC into iNKT cell-deficient J&agr;18−/− mice had no such effects, suggesting that &agr;GC was a specific activator of iNKT cells. Conclusions: iNKT cells play a protective role against post-MI LV remodeling and failure through the enhanced expression of cardioprotective cytokines such as IL-10.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2002
Takeaki Kaneko; Satoshi Fujii; Akio Matsumoto; Daisuke Goto; Naoki Ishimori; Keiko Watano; Tomoo Furumoto; Taeko Sugawara; Burton E. Sobel; Akira Kitabatake
Plasminogen activator inhibitor-1 (PAI-1) inhibits fibrinolysis and proteolysis. Basic fibroblast growth factor (bFGF) stimulates angiogenesis, which requires regional proteolysis. Because modulation of vasculopathy requires tight control of proteolysis, effects of bFGF on PAI-1 expression in endothelial cells (ECs) were characterized. bFGF increased PAI-1 mRNA and accumulation of PAI-1 protein in conditioned media in human umbilical vein ECs. The bFGF-mediated increase in PAI-1 mRNA was attenuated by inhibition of extracellular signal-regulated kinase kinase in human ECV304 cells. The rate of decrease in PAI-1 mRNA after actinomycin D treatment was not affected by bFGF. Transient transfection assays of the human PAI-1 promoter-luciferase construct demonstrated that bFGF-induced PAI-1 transcription was dependent on the elements within the −313 to −260 bp relative to the transcription start site. This region contains an E26 transformation specific 1 (Ets-1)-like site. Electrophoretic mobility shift assay showed that bFGF increased nuclear translocation or DNA binding of the Ets-1-like transcription factor to the PAI-1 promoter. Nucleotide substitution to disrupt the Ets-1-like site reduced bFGF-stimulated promoter activity. Fenofibric acid, an agonist ligand for the peroxisome proliferator-activated receptor-&agr;, inhibited basal and bFGF-stimulated PAI-1 expression. By inducing PAI-1 expression from ECs, bFGF may control proteolysis and fibrinolysis in vessel walls.
Genetics | 2006
Ioannis M. Stylianou; Shirng-Wern Tsaih; Keith DiPetrillo; Naoki Ishimori; Renhua Li; Beverly Paigen; Gary A. Churchill
Intercrosses between inbred lines provide a traditional approach to analysis of polygenic inheritance in model organisms. Chromosome substitution strains (CSSs) have been developed as an alternative to accelerate the pace of gene identification in quantitative trait mapping. We compared a classical intercross and three CSS intercrosses to examine the genetic architecture underlying plasma high-density lipoprotein cholesterol (HDL) levels in the C57BL/6J (B) and A/J (A) mouse strains. The B × A intercross revealed significant quantitative trait loci (QTL) for HDL on chromosomes 1, 4, 8, 15, 17, 18, and 19. A CSS survey revealed that many have significantly different HDL levels compared to the background strain B, including chromosomes with no significant QTL in the intercross and, in some cases (CSS-1, CSS-17), effects that are opposite to those observed in the B × A intercross population. Intercrosses between B and three CSSs (CSS-3, CSS-11, and CSS-8) revealed significant QTL but with some unexpected differences from the B × A intercross. Our inability to predict the results of CSS intercrosses suggests that additional complexity will be revealed by further crosses and that the CSS mapping strategy should be viewed as a complement to, rather than a replacement for, classical intercross mapping.