Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoki Tarui is active.

Publication


Featured researches published by Naoki Tarui.


The Journal of Neuroscience | 2010

A Noncompetitive BACE1 Inhibitor TAK-070 Ameliorates Aβ Pathology and Behavioral Deficits in a Mouse Model of Alzheimer's Disease

Hiroaki Fukumoto; Hideki Takahashi; Naoki Tarui; Junji Matsui; Taisuke Tomita; Mitsuhiro Hirode; Masumi Sagayama; Ryouta Maeda; Makiko Kawamoto; Kazuko Hirai; Jun Terauchi; Yasufumi Sakura; Mitsuru Kakihana; Kaneyoshi Kato; Takeshi Iwatsubo; Masaomi Miyamoto

We discovered a nonpeptidic compound, TAK-070, that inhibited BACE1, a rate-limiting protease for the generation of Aβ peptides that are considered causative for Alzheimers disease (AD), in a noncompetitive manner. TAK-070 bound to full-length BACE1, but not to truncated BACE1 lacking the transmembrane domain. Short-term oral administration of TAK-070 decreased the brain levels of soluble Aβ, increased that of neurotrophic sAPPα by ∼20%, and normalized the behavioral impairments in cognitive tests in Tg2576 mice, an APP transgenic mouse model of AD. Six-month chronic treatment decreased cerebral Aβ deposition by ∼60%, preserving the pharmacological efficacy on soluble Aβ and sAPPα levels. These results support the feasibility of BACE1 inhibition with a noncompetitive inhibitor as disease-modifying as well as symptomatic therapy for AD.


Journal of Medicinal Chemistry | 2012

Discovery of a Novel Pyrrole Derivative 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine Fumarate (TAK-438) as a Potassium-Competitive Acid Blocker (P-CAB)

Yasuyoshi Arikawa; Haruyuki Nishida; Osamu Kurasawa; Atsushi Hasuoka; Keizo Hirase; Nobuhiro Inatomi; Yasunobu Hori; Jun Matsukawa; Akio Imanishi; Mitsuyo Kondo; Naoki Tarui; Teruki Hamada; Terufumi Takagi; Toshiyuki Takeuchi; Masahiro Kajino

In our pursuit of developing a novel and potent potassium-competitive acid blocker (P-CAB), we synthesized pyrrole derivatives focusing on compounds with low log D and high ligand-lipophilicity efficiency (LLE) values. Among the compounds synthesized, the compound 13e exhibited potent H(+),K(+)-ATPase inhibitory activity and potent gastric acid secretion inhibitory action in vivo. Its maximum efficacy was more potent and its duration of action was much longer than those of proton pump inhibitors (PPIs). Therefore, compound 13e (1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine fumarate, TAK-438) was selected as a drug candidate for the treatment of gastroesophageal reflux disease (GERD), peptic ulcer, and other acid-related diseases.


Bioorganic & Medicinal Chemistry | 2012

Discovery, synthesis, and biological evaluation of novel pyrrole derivatives as highly selective potassium-competitive acid blockers.

Haruyuki Nishida; Atsushi Hasuoka; Yasuyoshi Arikawa; Osamu Kurasawa; Keizo Hirase; Nobuhiro Inatomi; Yasunobu Hori; Fumihiko Sato; Naoki Tarui; Akio Imanishi; Mitsuyo Kondo; Terufumi Takagi; Masahiro Kajino

To discover a gastric antisecretory agent more potent than existing proton pump inhibitors, novel pyrrole derivatives were synthesized, and their H(+),K(+)-ATPase inhibitory activities and inhibitory action on histamine-stimulated gastric acid secretion in rats were evaluated. Among the compounds synthesized, compound 17a exhibited selective and potent H(+),K(+)-ATPase inhibitory activity through reversible and K(+)-competitive ionic binding; furthermore, compound 17c exhibited potent inhibitory action on histamine-stimulated gastric acid secretion in rats and Heidenhain pouch dogs.


Journal of Medicinal Chemistry | 2013

Design, Synthesis, and Biological Evaluation of Novel Investigational Nonapeptide KISS1R Agonists with Testosterone-Suppressive Activity

Taiji Asami; Naoki Nishizawa; Hisanori Matsui; Kimiko Nishibori; Yoshihiro Ishibashi; Yasuko Horikoshi; Masaharu Nakayama; Shin-ichi Matsumoto; Naoki Tarui; Masashi Yamaguchi; Hirokazu Matsumoto; Tetsuya Ohtaki; Chieko Kitada

Metastin/kisspeptin is a 54 amino acid peptide ligand of the KISS1R receptor and is a critical regulator of GnRH secretion. The N-terminally truncated peptide, metastin(45-54), possesses a 10-fold higher receptor-binding affinity than full-length metastin and agonistic KISS1R activity but is rapidly inactivated in rodent plasma. We have developed a decapeptide analog [D-Tyr(45),D-Trp(47),azaGly(51),Arg(Me)(53)]metastin(45-54) with improved serum stability compared with metastin(45-54) but with decreased KISS1R agonistic activity. Amino acid replacements at positions 45-47 led to an enhancement of KISS1R agonistic activity and metabolic stability. N-terminal truncation resulted in a stable nonapeptide, [D-Tyr(46),D-Pya(4)(47),azaGly(51),Arg(Me)(53)]metastin(46-54), compound 26, which displayed KISS1R binding affinities comparable to metastin(45-54) and had improved serum stability. Compound 26 reduced plasma testosterone in male rats and is the first short-length metastin analog to possess testosterone suppressive activities. Compound 26 has led to the elucidation of investigational analogs TAK-683 and TAK-448, both of which have undergone clinical evaluation for hormone-dependent diseases such as prostate cancer.


Bioorganic & Medicinal Chemistry Letters | 2012

Serum stability of selected decapeptide agonists of KISS1R using pseudopeptides

Taiji Asami; Naoki Nishizawa; Yoshihiro Ishibashi; Kimiko Nishibori; Masaharu Nakayama; Yasuko Horikoshi; Shin-ichi Matsumoto; Masashi Yamaguchi; Hirokazu Matsumoto; Naoki Tarui; Tetsuya Ohtaki; Chieko Kitada

Metastin/kisspeptin, a 54-amino acid peptide, is the ligand of the G-protein-coupled receptor KISS1R which plays a key role in pathways that regulate reproduction and cell migration in many endocrine and gonadal tissues. The N-terminally truncated decapeptide, metastin(45-54), has 3-10 times higher receptor affinity and intracellular calcium ion-mobilizing activity but is rapidly inactivated in serum. In this study we designed and synthesized stable KISS1R agonistic decapeptide analogs with selected substitutions at positions 47, 50, and 51. Replacement of glycine with azaglycine (azaGly) in which the α-carbon is replaced with a nitrogen atom at position 51 improved the stability of amide bonds between Phe(50)-Gly(51) and Gly(51)-Leu(52) as determined by in vitro mouse serum stability studies. Substitution for tryptophan at position 47 with other amino acids such as serine, threonine, β-(3-pyridyl)alanine, and D-tryptophan (D-Trp), produced analogs that were highly stable in mouse serum. D-Trp(47) analog 13 showed not only high metabolic stability but also excellent KISS1R agonistic activity. Other labile peptides may have increased serum stability using amino acid substitution.


Journal of Biomolecular Screening | 2012

High-Throughput Screening of Potassium-Competitive Acid Blockers

Mitsuyo Kondo; Makiko Kawamoto; Atsushi Hasuoka; Masahiro Kajino; Nobuhiro Inatomi; Naoki Tarui

H+,K+-ATPase is a key enzyme in the process of gastric acid secretion, and proton pump inhibitors (PPIs) have been accepted as one of the most effective treatments for peptic ulcer and gastroesophageal reflux disease. To discover a novel class of PPIs, the authors screened a low-molecular-weight compound library and identified two prospective acid blockers that were pyrrole derivatives. Both compounds inhibited H+,K+-ATPase in a reversible and potassium-competitive manner. These compounds led to the development of TAK-438 (1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate), which is currently undergoing clinical trials as a novel potassium-competitive acid blocker for the treatment of acid-related diseases.


Journal of Bioscience and Bioengineering | 2002

Kinetic Resolution of an Indan Derivative Using Bacillus sp.SUI-12 : Synthesis of a Key Intermediate of the Melatonin Receptor Agonist TAK-375

Naoki Tarui; Yoichi Nagano; Takeshi Sakane; Kiyoharu Matsumoto; Mitsuru Kawada; Osamu Uchikawa; Shigenori Ohkawa; Kazuo Nakahama

The chiral indan derivative (S)-2 (2-[(8S)-1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl]ethyl-amine) was synthesized by enzyme-catalyzed asymmetric hydrolysis of the racemic acetamide 1 (N-[2-(1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl)ethyl]acetamide). The reaction was carried out using Bacillus sp. SUI-12 screened for the ability to hydrolyze 1 to give (S)-2 with high enantioselectivity. In a scaled-up experiment, a low reaction rate was observed. However, by changing the culture medium and the reaction conditions, it became possible to run the reaction to 40% conversion on a 10-g or more scale, obtaining (S)-2 at >;99% enantiomeric excess (ee). The (S)-2 obtained was available for the synthesis of the melatonin receptor agonist TAK-375 (N-[2-[(8S)-1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl]ethyl]propanamide).


Journal of Medicinal Chemistry | 2014

Physicochemically and pharmacokinetically stable nonapeptide KISS1 receptor agonists with highly potent testosterone-suppressive activity.

Taiji Asami; Naoki Nishizawa; Hisanori Matsui; Yoshihiro Takatsu; Atsuko Suzuki; Atsushi Kiba; Michiko Terada; Kimiko Nishibori; Masaharu Nakayama; Junko Ban; Shin-ichi Matsumoto; Naoki Tarui; Yukihiro Ikeda; Masashi Yamaguchi; Masami Kusaka; Tetsuya Ohtaki; Chieko Kitada

Modifications of metastin(45-54) produced peptide analogues with higher metabolic stability than metastin(45-54). N-terminally truncated nonapeptide 4 ([D-Tyr46,D-Pya(4)47,azaGly51,Arg(Me)53]metastin(46-54)) is a representative compound with both potent agonistic activity and metabolic stability. Although 4 had more potent testosterone-suppressant activity than metastin, it possessed physicochemical instability at pH 7 and insufficient in vivo activity. Instability at pH 7 was dependent upon Asn48 and Ser49; substitution of Ser49 with Thr49 reduced this instability and maintained KISS1 receptor agonistic activity. Furthermore, [D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54) (14) showed 2-fold greater [Ca2+]i-mobilizing activity than metastin(45-54) and an apparent increase in physicochemical stability. N-terminal acetylation of 14 resulted in the most potent analogue, 22 (Ac-[D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54)). With continuous administration, 22 possessed 10-50-fold more potent testosterone-suppressive activity in rats than 4. These results suggested that a controlled release of short-length KISS1 receptor agonists can suppress the hypothalamic-pituitary-gonadal axis and reduce testosterone levels. Compound 22 was selected for further preclinical evaluation for hormone-dependent diseases.


Molecular Membrane Biology | 2014

Generating thermostabilized agonist-bound GPR40/FFAR1 using virus-like particles and a label-free binding assay

Yoshihiko Hirozane; Takashi Motoyaji; Takamitsu Maru; Kengo Okada; Naoki Tarui

Abstract Elucidating the detailed mechanism of activation of membrane protein receptors and their ligand binding is essential for structure-based drug design. Membrane protein crystal structure analysis successfully aids in understanding these fundamental molecular interactions. However, protein crystal structure analysis of the G-protein-coupled receptor (GPCR) remains challenging, even for the class of GPCRs which have been included in the majority of structure analysis reports among membrane proteins, due to the substantial instability of these receptors when extracted from lipid bilayer membranes. It is known that increased thermostability tends to decrease conformational flexibility, which contributes to the generation of diffraction quality crystals. However, this is still not straightforward, and significant effort is required to identify thermostabilized mutants that are optimal for crystallography. To address this issue, a versatile screening platform based on a label-free ligand binding assay combined with transient overexpression in virus-like particles was developed. This platform was used to generate thermostabilized GPR40 [also known as free fatty acid receptor 1 (FFAR1)] for fasiglifam (TAK-875). This demonstrated that the thermostabilized mutant GPR40 (L42A/F88A/G103A/Y202F) was successfully used for crystal structure analysis.


Bioscience, Biotechnology, and Biochemistry | 2002

Kinetic Resolutions of Indan Derivatives Using Bacteria

Naoki Tarui; Hayao Watanabe; Kohji Fukatsu; Shigenori Ohkawa; Kazuo Nakahama

Racemic indan derivatives have been resolved by the hydrolysis of amide bonds using Corynebacterium ammoniagenes IFO12612 to produce (S)-amine and (R)-amides. In the kinetic resolution of 1 (N-[2-(6-methoxy-indan-1-yl)ethyl]acetamide), it was possible to run the reaction to 44% conversion on a 10-g scale, obtaining (S)-amine 4 ((S)-2-(6-methoxy-indan-1-yl)ethylamine) at >99% enantiomeric excess (ee) and (R)-1 at 98% ee.

Collaboration


Dive into the Naoki Tarui's collaboration.

Top Co-Authors

Avatar

Yoshinori Ikeura

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masahiro Kajino

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tadatoshi Hashimoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hirokazu Matsumoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Junya Shirai

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Kazuo Nakahama

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Makiko Kawamoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Nobuhiro Inatomi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Atsushi Hasuoka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Mitsuyo Kondo

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge