Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoko Misawa is active.

Publication


Featured researches published by Naoko Misawa.


Scientific Reports | 2013

Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus

Hirotaka Ebina; Naoko Misawa; Yuka Kanemura; Yoshio Koyanagi

Even though highly active anti-retroviral therapy is able to keep HIV-1 replication under control, the virus can lie in a dormant state within the host genome, known as a latent reservoir, and poses a threat to re-emerge at any time. However, novel technologies aimed at disrupting HIV-1 provirus may be capable of eradicating viral genomes from infected individuals. In this study, we showed the potential of the CRISPR/Cas9 system to edit the HIV-1 genome and block its expression. When LTR-targeting CRISPR/Cas9 components were transfected into HIV-1 LTR expression-dormant and -inducible T cells, a significant loss of LTR-driven expression was observed after stimulation. Sequence analysis confirmed that this CRISPR/Cas9 system efficiently cleaved and mutated LTR target sites. More importantly, this system was also able to remove internal viral genes from the host cell chromosome. Our results suggest that the CRISPR/Cas9 system may be a useful tool for curing HIV-1 infection.


Journal of Virology | 2008

Modulation of Human Immunodeficiency Virus Type 1 Infectivity through Incorporation of Tetraspanin Proteins

Kei Sato; Jun Aoki; Naoko Misawa; Eriko Daikoku; Kouichi Sano; Yuetsu Tanaka; Yoshio Koyanagi

ABSTRACT Accumulating evidence indicates that human immunodeficiency virus type 1 (HIV-1) acquires various cellular membrane proteins in the lipid bilayer of the viral envelope membrane. Although some virion-incorporated cellular membrane proteins are known to potently affect HIV-1 infectivity, the virological functions of most virion-incorporated membrane proteins remain unclear. Among these host proteins, we found that CD63 was eliminated from the plasma membranes of HIV-1-producing T cells after activation, followed by a decrease in the amount of virion-incorporated CD63, and in contrast, an increase in the infectivity of the released virions. On the other hand, we found that CD63 at the cell surface was preferentially embedded on the membrane of released virions in an HIV-1 envelope protein (Env)-independent manner and that virion-incorporated CD63 had the potential to inhibit HIV-1 Env-mediated infection in a strain-specific manner at the postattachment entry step(s). In addition, these behaviors were commonly observed in other tetraspanin proteins, such as CD9, CD81, CD82, and CD231. However, L6 protein, whose topology is similar to that of tetraspanins but which does not belong to the tetraspanin superfamily, did not have the potential to prevent HIV-1 infection, despite its successful incorporation into the released particles. Taken together, these results suggest that tetraspanin proteins have the unique potential to modulate HIV-1 infectivity through incorporation into released HIV-1 particles, and our findings may provide a clue to undiscovered aspects of HIV-1 entry.


Blood | 2011

A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice

Kei Sato; Naoko Misawa; Chuanyi Nie; Yorifumi Satou; Dai Iwakiri; Masao Matsuoka; Rei Takahashi; Kiyotaka Kuzushima; Mamoru Ito; Kenzo Takada; Yoshio Koyanagi

EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a rare yet devastating disorder caused by EBV infection in humans. However, the mechanism of this disease has yet to be elucidated because of a lack of appropriate animal models. Here, we used a human CD34(+) cell-transplanted humanized mouse model and reproduced pathologic conditions resembling EBV-HLH in humans. By 10 weeks postinfection, two-thirds of the infected mice died after exhibiting high and persistent viremia, leukocytosis, IFN-γ cytokinenemia, normocytic anemia, and thrombocytopenia. EBV-infected mice also showed systemic organ infiltration by activated CD8(+) T cells and prominent hemophagocytosis in BM, spleen, and liver. Notably, the level of EBV load in plasma correlated directly with both the activation frequency of CD8(+) T cells and the level of IFN-γ in plasma. Moreover, high levels of EBV-encoded small RNA1 were detected in plasma of infected mice, reflecting what has been observed in patients. These findings suggest that our EBV infection model mirrors virologic, hematologic, and immunopathologic aspects of EBV-HLH. Furthermore, in contrast to CD8(+) T cells, we found a significant decrease of natural killer cells, myeloid dendritic cells, and plasmacytoid dendritic cells in the spleens of infected mice, suggesting that the collapse of balanced immunity associates with the progression of EBV-HLH pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Tumor necrosis factor-related apoptosis-inducing ligand induces neuronal death in a murine model of HIV central nervous system infection

Yoshiharu Miura; Naoko Misawa; Yuji Kawano; Hiroshi Okada; Yoshio Inagaki; Naoki Yamamoto; Mamoru Ito; Hideo Yagita; Ko Okumura; Hidehiro Mizusawa; Yoshio Koyanagi

HIV-1 infection in the brain induces neuronal apoptosis leading to HIV-associated dementia. To explore the underlying mechanism, we developed a murine model by using human peripheral blood mononuclear cell (PBMC)–transplanted nonobese diabetic (NOD)–severe combined immunodeficiency (SCID) (hu-PBMC-NOD-SCID) mice. Administration of lipopolysaccharide (LPS) to HIV-1-infected hu-PBMC-NOD-SCID mice induced infiltration of HIV-1-infected human cells into the perivascular region of the brain and neuronal apoptosis was found in macrophage (M)-tropic but not T cell (T)-tropic HIV-1-infected brains. The apoptotic neurons were frequently colocalized with the HIV-1-infected macrophages that expressed tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). Administration of a neutralizing antibody against human TRAIL but not human TNF-α or Fas ligand (FasL) blocked the neuronal apoptosis in the HIV-1-infected brain. These results strongly suggest a critical contribution of TRAIL expressed on HIV-1-infected macrophages to neuronal apoptosis.


Journal of Virology | 2010

Remarkable Lethal G-to-A Mutations in vif-Proficient HIV-1 Provirus by Individual APOBEC3 Proteins in Humanized Mice

Kei Sato; Taisuke Izumi; Naoko Misawa; Tomoko Kobayashi; Yoshiki Yamashita; Masahide Ohmichi; Mamoru Ito; Akifumi Takaori-Kondo; Yoshio Koyanagi

ABSTRACT Genomic hypermutation of RNA viruses, including human immunodeficiency virus type 1 (HIV-1), can be provoked by intrinsic and extrinsic pressures, which lead to the inhibition of viral replication and/or the progression of viral diversity. Human APOBEC3G was identified as an HIV-1 restriction factor, which edits nascent HIV-1 DNA by inducing G-to-A hypermutations and debilitates the infectivity of vif-deficient HIV-1. On the other hand, HIV-1 Vif protein has the robust potential to degrade APOBEC3G protein. Although subsequent investigations have revealed that lines of APOBEC3 family proteins have the capacity to mutate HIV-1 DNA, it remains unclear whether these endogenous APOBEC3s, including APOBEC3G, contribute to mutations of vif-proficient HIV-1 provirus in vivo and, if so, what is the significance of these mutations. In this study, we use a human hematopoietic stem cell-transplanted humanized mouse (NOG-hCD34 mouse) model and demonstrate the predominant accumulation of G-to-A mutations in vif-proficient HIV-1 provirus displaying characteristics of APOBEC3-mediated mutagenesis. Notably, the APOBEC3-associated G-to-A mutation of HIV-1 DNA that leads to the termination of translation was significantly observed. We further provide a novel insight suggesting that HIV-1 G-to-A hypermutation is independently induced by individual APOBEC3 proteins. In contrast to the prominent mutation in intracellular proviral DNA, viral RNA in plasma possessed fewer G-to-A mutations. Taken together, these results provide the evidence indicating that endogenous APOBEC3s are associated with G-to-A mutation of HIV-1 provirus in vivo, which can result in the abrogation of HIV-1 infection.


Virology | 2009

Selective infection of CD4+ effector memory T lymphocytes leads to preferential depletion of memory T lymphocytes in R5 HIV-1-infected humanized NOD/SCID/IL-2Rγnull mice

Chuanyi Nie; Kei Sato; Naoko Misawa; Hiroko Kitayama; Hisanori Fujino; Hidefumi Hiramatsu; Toshio Heike; Tatsutoshi Nakahata; Yuetsu Tanaka; Mamoru Ito; Yoshio Koyanagi

To investigate the events leading to the depletion of CD4(+) T lymphocytes during long-term infection of human immunodeficiency virus type 1 (HIV-1), we infected human CD34(+) cells-transplanted NOD/SCID/IL-2Rgamma(null) mice with CXCR4-tropic and CCR5-tropic HIV-1. CXCR4-tropic HIV-1-infected mice were quickly depleted of CD4(+) thymocytes and both CD45RA(+) naïve and CD45RA(-) memory CD4(+) T lymphocytes, while CCR5-tropic HIV-1-infected mice were preferentially depleted of CD45RA(-) memory CD4(+) T lymphocytes. Staining of HIV-1 p24 antigen revealed that CCR5-tropic HIV-1 preferentially infected effector memory T lymphocytes (T(EM)) rather than central memory T lymphocytes. In addition, the majority of p24(+) cells in CCR5-tropic HIV-1-infected mice were activated and in cycling phase. Taken together, our findings indicate that productive infection mainly takes place in the activated T(EM) in cycling phase and further suggest that the predominant infection in T(EM) would lead to the depletion of memory CD4(+) T lymphocytes in CCR5-tropic HIV-1-infected mice.


Journal of Virology | 2012

Vpu augments the initial burst phase of HIV-1 propagation and downregulates BST2 and CD4 in humanized mice

Kei Sato; Naoko Misawa; Mitsuko Fukuhara; Shingo Iwami; Dong Sung An; Mamoru Ito; Yoshio Koyanagi

ABSTRACT While human cells express potent antiviral proteins as part of the host defense repertoire, viruses have evolved their own arsenal of proteins to antagonize them. BST2 was identified as an inhibitory cellular protein of HIV-1 replication, which tethers virions to the cell surface to prevent their release. On the other hand, the HIV-1 accessory protein, Vpu, has the ability to downregulate and counteract BST2. Vpu also possesses the ability to downmodulate cellular CD4 and SLAMF6 molecules expressed on infected cells. However, the role of Vpu in HIV-1 infection in vivo remains unclear. Here, using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrate that Vpu contributes to the efficient spread of HIV-1 in vivo during the acute phase of infection. Although Vpu did not affect viral cytopathicity, target cell preference, and the level of viral protein expression, the amount of cell-free virions in vpu-deficient HIV-1-infected mice was profoundly lower than that in wild-type HIV-1-infected mice. We provide a novel insight suggesting that Vpu concomitantly downregulates BST2 and CD4, but not SLAMF6, from the surface of infected cells. Furthermore, we show evidence suggesting that BST2 and CD4 impair the production of cell-free infectious virions but do not associate with the efficiency of cell-to-cell HIV-1 transmission. Taken together, our findings suggest that Vpu downmodulates BST2 and CD4 in infected cells and augments the initial burst of HIV-1 replication in vivo. This is the first report demonstrating the role of Vpu in HIV-1 infection in an in vivo model.


Retrovirology | 2011

No association of xenotropic murine leukemia virus-related virus with prostate cancer or chronic fatigue syndrome in Japan

Rika A. Furuta; Takayuki Miyazawa; Takeki Sugiyama; Hirohiko Kuratsune; Yasuhiro Ikeda; Eiji Sato; Naoko Misawa; Yasuhito Nakatomi; Ryuta Sakuma; Kazuta Yasui; Kouzi Yamaguti; Fumiya Hirayama

BackgroundThe involvement of xenotropic murine leukemia virus-related virus (XMRV) in prostate cancer (PC) and chronic fatigue syndrome (CFS) is disputed as its reported prevalence ranges from 0% to 25% in PC cases and from 0% to more than 80% in CFS cases. To evaluate the risk of XMRV infection during blood transfusion in Japan, we screened three populations--healthy donors (n = 500), patients with PC (n = 67), and patients with CFS (n = 100)--for antibodies against XMRV proteins in freshly collected blood samples. We also examined blood samples of viral antibody-positive patients with PC and all (both antibody-positive and antibody-negative) patients with CFS for XMRV DNA.ResultsAntibody screening by immunoblot analysis showed that a fraction of the cases (1.6-3.0%) possessed anti-Gag antibodies regardless of their gender or disease condition. Most of these antibodies were highly specific to XMRV Gag capsid protein, but none of the individuals in the three tested populations retained strong antibody responses to multiple XMRV proteins. In the viral antibody-positive PC patients, we occasionally detected XMRV genes in plasma and peripheral blood mononuclear cells but failed to isolate an infectious or full-length XMRV. Further, all CFS patients tested negative for XMRV DNA in peripheral blood mononuclear cells.ConclusionOur data show no solid evidence of XMRV infection in any of the three populations tested, implying that there is no association between the onset of PC or CFS and XMRV infection in Japan. However, the lack of adequate human specimens as a positive control in Ab screening and the limited sample size do not allow us to draw a firm conclusion.


Virus Genes | 2003

Quantitative Analysis of Human Immunodeficiency Virus Type 1 DNA Dynamics by Real-Time PCR: Integration Efficiency in Stimulated and Unstimulated Peripheral Blood Mononuclear Cells

Youichi Suzuki; Naoko Misawa; Chihiro Sato; Hirotaka Ebina; Takao Masuda; Naoki Yamamoto; Yoshio Koyanagi

We established a set of real-time PCR assay to accurately quantify human immunodeficiency virus type 1 (HIV-1) DNA in infected cells. Using this assay we were able to measure the strong-stop, full-length/ 1-LTR circle, 2-LTR circle, and integrated forms of viral DNA, and the data provided was quite consistent with the characteristics of mutant viruses in early phase of infection. Since our assay is particularly applicable to quantify the integrated DNA in small scale of samples, we measured the level of integrated DNA in wild-type virus (WT)- or Vpr-defective virus (ΔVpr)-infected peripheral blood mononuclear cells (PBMC), and examined whether quiescent condition of the PBMC influences integration step of HIV-1. Under stimulating condition approximately 25% of total viral DNA was in integrated form in either WT- or ΔVpr-infected cells. In contrast, under unstimulated condition the level of integration efficiency was not significantly reduced in WT-infected cells, while this efficiency was severely impaired in the absence of vpr gene. This result clearly demonstrated a crucial role of the Vpr for nuclear localization and subsequent integration of viral DNA in nondividing cells. Therefore, our assay is useful for analyzing the events in early phase of HIV-1 infection under various conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively regulate viral replication

Taisuke Izumi; Katsuhiro Io; Masashi Matsui; Kotaro Shirakawa; Masanobu Shinohara; Yuya Nagai; Masahiro Kawahara; Masayuki Kobayashi; Hiroshi Kondoh; Naoko Misawa; Yoshio Koyanagi; Takashi Uchiyama; Akifumi Takaori-Kondo

Viral infectivity factor, an accessory protein encoded in the HIV-1 genome, induces G2 cell cycle arrest; however, the biological significance and mechanism(s) remain totally unclear. Here we demonstrate that the TP53 pathway is involved in Vif-mediated G2 cell cycle arrest. Vif enhances the stability and transcriptional activity of TP53 by blocking the MDM2-mediated ubiquitination and nuclear export of TP53. Furthermore, Vif causes G2 cell cycle arrest in a TP53-dependent manner. HXB2 Vif lacks these activities toward TP53 and cannot induce G2 cell cycle arrest. Using mutagenesis, we demonstrate that the critical residues for this function are located in the N-terminal region of Vif. Finally, we construct a mutant NL4-3 virus with an NL4-3/HXB2 chimeric Vif defective for the ability to induce cell cycle arrest and show that the mutant virus replicates less effectively than the wild-type NL4-3 virus in T cells expressing TP53. These data imply that Vif induces G2 cell cycle arrest through functional interaction with the TP53/MDM2 axis and that the G2 cell cycle arrest induced by Vif has a positive effect on HIV-1 replication. This report demonstrates the molecular mechanisms and the biological significance of Vif-mediated G2 cell cycle arrest for HIV-1 infection.

Collaboration


Dive into the Naoko Misawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mamoru Ito

Kyushu University of Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Tomoko Kobayashi

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shingo Iwami

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar

Yuetsu Tanaka

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge