Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoko Ohtani is active.

Publication


Featured researches published by Naoko Ohtani.


Nature | 2013

Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome

Shin Yoshimoto; Tze Mun Loo; Koji Atarashi; Hiroaki Kanda; Seidai Sato; Seiichi Oyadomari; Yoichiro Iwakura; Kenshiro Oshima; Hidetoshi Morita; Masahira Hattori; Kenya Honda; Yuichi Ishikawa; Eiji Hara; Naoko Ohtani

Obesity has become more prevalent in most developed countries over the past few decades, and is increasingly recognized as a major risk factor for several common types of cancer. As the worldwide obesity epidemic has shown no signs of abating, better understanding of the mechanisms underlying obesity-associated cancer is urgently needed. Although several events were proposed to be involved in obesity-associated cancer, the exact molecular mechanisms that integrate these events have remained largely unclear. Here we show that senescence-associated secretory phenotype (SASP) has crucial roles in promoting obesity-associated hepatocellular carcinoma (HCC) development in mice. Dietary or genetic obesity induces alterations of gut microbiota, thereby increasing the levels of deoxycholic acid (DCA), a gut bacterial metabolite known to cause DNA damage. The enterohepatic circulation of DCA provokes SASP phenotype in hepatic stellate cells (HSCs), which in turn secretes various inflammatory and tumour-promoting factors in the liver, thus facilitating HCC development in mice after exposure to chemical carcinogen. Notably, blocking DCA production or reducing gut bacteria efficiently prevents HCC development in obese mice. Similar results were also observed in mice lacking an SASP inducer or depleted of senescent HSCs, indicating that the DCA–SASP axis in HSCs has key roles in obesity-associated HCC development. Moreover, signs of SASP were also observed in the HSCs in the area of HCC arising in patients with non-alcoholic steatohepatitis, indicating that a similar pathway may contribute to at least certain aspects of obesity-associated HCC development in humans as well. These findings provide valuable new insights into the development of obesity-associated cancer and open up new possibilities for its control.


Nature | 2001

Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence.

Naoko Ohtani; Zoe Zebedee; Thomas J. G. Huot; Julie Stinson; Masataka Sugimoto; Yasuhiro Ohashi; Andrew D. Sharrocks; Gordon Peters; Eiji Hara

The p16INK4a cyclin-dependent kinase inhibitor is implicated in replicative senescence, the state of permanent growth arrest provoked by cumulative cell divisions or as a response to constitutive Ras–Raf–MEK signalling in somatic cells. Some contribution to senescence presumably underlies the importance of p16INK4a as a tumour suppressor but the mechanisms regulating its expression in these different contexts remain unknown. Here we demonstrate a role for the Ets1 and Ets2 transcription factors based on their ability to activate the p16INK4a promoter through an ETS-binding site and their patterns of expression during the lifespan of human diploid fibroblasts. The induction of p16INK4a by Ets2, which is abundant in young human diploid fibroblasts, is potentiated by signalling through the Ras–Raf–MEK kinase cascade and inhibited by a direct interaction with the helix–loop–helix protein Id1 (ref. 11). In senescent cells, where the Ets2 levels and MEK signalling decline, the marked increase in p16INK4a expression is consistent with the reciprocal reduction of Id1 and accumulation of Ets1.


Nature Cell Biology | 2006

Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence.

Akiko Takahashi; Naoko Ohtani; Kimi Yamakoshi; Shin Ichi Iida; Hidetoshi Tahara; Keiko Nakayama; Keiichi I. Nakayama; Toshinori Ide; Hideyuki Saya; Eiji Hara

The p16INK4a cyclin-dependent kinase inhibitor has a key role in establishing stable G1 cell-cycle arrest through activating the retinoblastoma (Rb) tumour suppressor protein pRb in cellular senescence. Here, we show that the p16INK4a /Rb-pathway also cooperates with mitogenic signals to induce elevated intracellular levels of reactive oxygen species (ROS), thereby activating protein kinase Cδ (PKCδ) in human senescent cells. Importantly, once activated by ROS, PKCδ promotes further generation of ROS, thus establishing a positive feedback loop to sustain ROS–PKCδ signalling. Sustained activation of ROS–PKCδ signalling irreversibly blocks cytokinesis, at least partly through reducing the level of WARTS (also known as LATS1), a mitotic exit network (MEN) kinase required for cytokinesis, in human senescent cells. This irreversible cytokinetic block is likely to act as a second barrier to cellular immortalization ensuring stable cell-cycle arrest in human senescent cells. These results uncover an unexpected role for the p16INK4a–Rb pathway and provide a new insight into how senescent cell-cycle arrest is enforced in human cells.


Developmental Cell | 2014

An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA

Marco Demaria; Naoko Ohtani; Sameh A. Youssef; Francis Rodier; Wendy Toussaint; James R. Mitchell; Remi-Martin Laberge; Jan Vijg; Harry van Steeg; Martijn E.T. Dollé; Jan H.J. Hoeijmakers; Alain de Bruin; Eiji Hara; Judith Campisi

Cellular senescence suppresses cancer by halting the growth of premalignant cells, yet the accumulation of senescent cells is thought to drive age-related pathology through a senescence-associated secretory phenotype (SASP), the function of which is unclear. To understand the physiological role(s) of the complex senescent phenotype, we generated a mouse model in which senescent cells can be visualized and eliminated in living animals. We show that senescent fibroblasts and endothelial cells appear very early in response to a cutaneous wound, where they accelerate wound closure by inducing myofibroblast differentiation through the secretion of platelet-derived growth factor AA (PDGF-AA). In two mouse models, topical treatment of senescence-free wounds with recombinant PDGF-AA rescued the delayed wound closure and lack of myofibroblast differentiation. These findings define a beneficial role for the SASP in tissue repair and help to explain why the SASP evolved.


Molecular Cell | 2012

DNA damage signaling triggers degradation of histone methyltransferases through APC/C Cdh1 in senescent cells

Akiko Takahashi; Yoshinori Imai; Kimi Yamakoshi; Shinji Kuninaka; Naoko Ohtani; Shin Yoshimoto; Satoshi Hori; Makoto Tachibana; Emma Anderton; Takashi Takeuchi; Yoichi Shinkai; Gordon Peters; Hideyuki Saya; Eiji Hara

Both the DNA damage response (DDR) and epigenetic mechanisms play key roles in the implementation of senescent phenotypes, but very little is known about how these two mechanisms are integrated to establish senescence-associated gene expression. Here we show that, in senescent cells, the DDR induces proteasomal degradation of G9a and GLP, major histone H3K9 mono- and dimethyltransferases, through Cdc14B- and p21(Waf1/Cip1)-dependent activation of APC/C(Cdh1) ubiquitin ligase, thereby causing a global decrease in H3K9 dimethylation, an epigenetic mark for euchromatic gene silencing. Interestingly, induction of IL-6 and IL-8, major players of the senescence-associated secretory phenotype (SASP), correlated with a decline of H3K9 dimethylation around the respective gene promoters and knockdown of Cdh1 abolished IL-6/IL-8 expression in senescent cells, suggesting that the APC/C(Cdh1)-G9a/GLP axis plays crucial roles in aspects of senescent phenotype. These findings establish a role for APC/C(Cdh1) and reveal how the DDR integrates with epigenetic processes to induce senescence-associated gene expression.


Cancer Science | 2009

Cellular senescence : Its role in tumor suppression and aging

Naoko Ohtani; David J. Mann; Eiji Hara

In normal tissue, cell division is carefully regulated to maintain the correct proliferative balance. Abnormal cell division underlies many hypoproliferative and hyperproliferative disorders, including cancer, and a better understanding of the mechanisms involved could lead to new strategies for treatment and prevention. Cellular senescence, a state of irreversible growth arrest, was first described as a limit to the replicative life span of somatic cells after serial cultivation in vitro. Recently, however, it has also been shown to be triggered prematurely by potentially oncogenic stimuli such as oncogene expression, oxidative stress, and DNA damage in cell culture studies. These data suggest that cellular senescence is therefore acting as a tumor‐protective fail‐safe mechanism. However, the significance of cellular senescence has remained an issue of debate over the years, with the possibility that it might be a cell culture‐related artifact. Recent reports on oncogene‐induced senescence detected in premalignant tumors have provided evidence to validate its role as a physiological response to prevent oncogenesis in vivo. In this review, we discuss the mechanisms for cellular senescence and its roles in vivo. (Cancer Sci 2009; 100: 792–797)


Journal of Cell Biology | 2003

Epstein-Barr virus LMP1 blocks p16INK4a-RB pathway by promoting nuclear export of E2F4/5.

Naoko Ohtani; Paul Brennan; Stefan Gaubatz; Elaine Sanij; Paul J. Hertzog; Ernst J. Wolvetang; Jacques Ghysdael; Martin Rowe; Eiji Hara

The p16INK4a–RB pathway plays a critical role in preventing inappropriate cell proliferation and is often targeted by viral oncoproteins during immortalization. Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is often present in EBV-associated proliferative diseases and is critical for the immortalizing and transforming activity of EBV. Unlike other DNA tumor virus oncoproteins, which possess immortalizing activity, LMP1 does not bind to retinoblastoma tumor suppressor protein, but instead blocks the expression of p16INK4a tumor suppressor gene. However, it has been unclear how LMP1 represses the p16INK4a gene expression. Here, we report that LMP1 promotes the CRM1-dependent nuclear export of Ets2, which is an important transcription factor for p16INK4a gene expression, thereby reducing the level of p16INK4a expression. We further demonstrate that LMP1 also blocks the function of E2F4 and E2F5 (E2F4/5) transcription factors through promoting their nuclear export in a CRM1-dependent manner. As E2F4/5 are essential downstream mediators for a p16INK4a-induced cell cycle arrest, these results indicate that the action of LMP1 on nuclear export has two effects on the p16INK4a–RB pathway: (1) repression of p16INK4a expression and (2) blocking the downstream mediator of the p16INK4a–RB pathway. These results reveal a novel activity of LMP1 and increase an understanding of how viral oncoproteins perturb the p16INK4a–RB pathway.


Cancer Science | 2013

Roles and mechanisms of cellular senescence in regulation of tissue homeostasis

Naoko Ohtani; Eiji Hara

Cellular senescence is the state of irreversible cell cycle arrest that can be induced by a variety of potentially oncogenic stimuli and has therefore long been considered to suppress tumorigenesis, acting as a guardian of homeostasis. However, surprisingly, emerging evidence reveals that senescent cells also promote secretion of a series of inflammatory cytokines, chemokines, growth factors and matrix remodeling factors, which alter the local tissue environment and contribute to chronic inflammation and cancer. This newly identified senescence phenotype, termed the senescence‐associated secretory phenotype (SASP) or the senescence‐messaging secretome (SMS), is induced by DNA damage that promotes the induction of cellular senescence. All of these senescence‐associated secreting factors are involved in homeostatic disorders such as cancer. Therefore, it is quite possible that accumulation of senescent cells during the aging process in vivo might contribute to age‐related increases in homeostatic disorders. In this review, current knowledge of the molecular and cellular biology of cellular senescence is introduced, focusing on its positive and negative roles in controlling tissue homeostasis in vivo.


Molecular Cell | 2014

Necessary and Sufficient Role for a Mitosis Skip in Senescence Induction

Yoshikazu Johmura; Midori Shimada; Toshinori Misaki; Aya Naiki-Ito; Hiroyuki Miyoshi; Noboru Motoyama; Naoko Ohtani; Eiji Hara; Motoki Nakamura; Akimichi Morita; Satoru Takahashi; Makoto Nakanishi

Senescence is a state of permanent growth arrest and is a pivotal part of the antitumorigenic barrier in vivo. Although the tumor suppressor activities of p53 and pRb family proteins are essential for the induction of senescence, molecular mechanisms by which these proteins induce senescence are still not clear. Using time-lapse live-cell imaging, we demonstrate here that normal human diploid fibroblasts (HDFs) exposed to various senescence-inducing stimuli undergo a mitosis skip before entry into permanent cell-cycle arrest. This mitosis skip is mediated by both p53-dependent premature activation of APC/C(Cdh1) and pRb family protein-dependent transcriptional suppression of mitotic regulators. Importantly, mitotic skipping is necessary and sufficient for senescence induction. p16 is only required for maintenance of senescence. Analysis of human nevi also suggested the role of mitosis skip in in vivo senescence. Our findings provide decisive evidence for the molecular basis underlying the induction and maintenance of cellular senescence.


Cancer Research | 2010

Intrinsic Cooperation between p16INK4a and p21Waf1/Cip1 in the Onset of Cellular Senescence and Tumor Suppression In vivo

Shinji Takeuchi; Akiko Takahashi; Noriko Motoi; Shin Yoshimoto; Tomoko Tajima; Kimi Yamakoshi; Atsushi Hirao; Shigeru Yanagi; Kiyoko Fukami; Yuichi Ishikawa; Saburo Sone; Eiji Hara; Naoko Ohtani

Although the p16(INK4a) and p21Waf1/Cip1 cyclin-dependent kinase (CDK) inhibitors are known to play key roles in cellular senescence in vitro, their roles in senescence remain rather poorly understood in vivo. This situation is partly due to the possibility of compensatory effect(s) between p16INK4a and p21Waf1/Cip1 or to the upregulation of functionally related CDK inhibitors. To directly address the cooperative roles of p16INK4a and p21Waf1/Cip1 in senescence in vivo, we generated a mouse line simply lacking both p16INK4a and p21Waf1/Cip1 genes [double-knockout (DKO)]. Mouse embryonic fibroblasts (MEF) derived from DKO mice displayed no evidence of cellular senescence when cultured serially in vitro. Moreover, DKO MEFs readily escaped Ras-induced senescence and overrode contact inhibition in culture. This was not the case in MEFs lacking either p16INK4a or p21Waf1/Cip1, indicating that p16(INK4a) and p21Waf1/Cip1 play cooperative roles in cellular senescence and contact inhibition in vitro. Notably, we found the DKO mice to be extremely susceptible to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin carcinogenesis that involves oncogenic mutation of the H-ras gene. Mechanistic investigations suggested that the high incidence of cancer in DKO mice likely reflected a cooperative effect of increased benign skin tumor formation caused by p21Waf1/Cip1 loss, with increased malignant conversion of benign skin tumors caused by p16(INK4a) loss. Our findings establish an intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo.

Collaboration


Dive into the Naoko Ohtani's collaboration.

Top Co-Authors

Avatar

Eiji Hara

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Akiko Takahashi

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Shin Yoshimoto

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tze Mun Loo

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Fumitaka Kamachi

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Hiroaki Kanda

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Seidai Sato

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge