Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomasa Gotoh is active.

Publication


Featured researches published by Naomasa Gotoh.


Molecular Microbiology | 1997

Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa

Thilo Köhler; Mehri Michea-Hamzehpour; Uta Henze; Naomasa Gotoh; Lasta Kocjancic Curty; Jean-Claude Pechère

Antibiotic‐resistant mutants of Pseudomonas aeruginosa were generated using chloramphenicol and ciprofloxacin as selective agents. These mutants displayed a multidrug phenotype and overexpressed an outer membrane protein of 50kDa, which was shown by Western blot analysis to correspond to OprN. A cosmid clone harbouring the oprN gene was isolated by partial complementation of a mutant deficient in OprM, the outer membrane component of the mexAB–oprM efflux operon. Antibiotic‐accumulation studies indicated that OprN was part of an energy‐dependent antibiotic‐efflux system. Sequencing of a 6180bp fragment from the complementing cosmid revealed the presence of three open reading frames (ORFs), which exhibited amino acid similarity to the components of the mexAB–oprM and mexCD–oprJ efflux operons of P. aeruginosa. The ORFs were designated MexE, MexF and OprN. Mutation of the mexE gene eliminated the multidrug‐resistance phenotype in an OprN‐overexpressing strain, but did not affect the susceptibility profile of the wild‐type strain. Expression of the mexEF–oprN operon was shown to be positively regulated by a protein encoded on a 1.5 kb DNA fragment located upstream of mexE and belonging to the LysR family of transcriptional activators. The presence of a plasmid containing this DNA fragment was sufficient to confer a multidrug phenotype onto the wild‐type strain but not onto the mexE mutant. Evidence is provided to show that the mexEF–oprN operon may be involved in the excretion of intermediates for the biosynthesis of pyocyanin, a typical secondary metabolite of P. aeruginosa.


Antimicrobial Agents and Chemotherapy | 2000

Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa

Nobuhisa Masuda; Eiko Sakagawa; Satoshi Ohya; Naomasa Gotoh; Hideto Tsujimoto; Takeshi Nishino

ABSTRACT To find the exact substrate specificities of three species of tripartite efflux systems of Pseudomonas aeruginosa, MexAB-OprM, MexCD-OprJ, and MexXY-OprM, we constructed a series of isogenic mutants, each of which constitutively overproduced one of the three efflux systems and lacked the other two, and their isogenic mutants, which lacked all these systems. Comparison of the susceptibilities of the constructed mutants to 52 antimicrobial agents belonging to various groups suggested the following substrate specificities. All of the efflux systems extrude a wide variety of antimicrobial agent groups, i.e., quinolones, macrolides, tetracyclines, lincomycin, chloramphenicol, most penicillins (all but carbenicillin and sulbenicillin), most cephems (all but cefsulodin and ceftazidime), meropenem, and S-4661, but none of them extrude polymyxin B or imipenem. Extrusion of aminoglycosides is specific to MexXY-OprM, and extrusion of a group of the β-lactams, i.e., carbenicillin, sulbenicillin, ceftazidime, moxalactam, and aztreonam, is specific to MexAB-OprM. Moreover, MexAB-OprM and MexCD-OprJ extrude novobiocin, cefsulodin, and flomoxef, while MexXY-OprM does not. These substrate specificities are distinct from those reported previously.


Antimicrobial Agents and Chemotherapy | 2000

Contribution of the MexX-MexY-OprM Efflux System to Intrinsic Resistance in Pseudomonas aeruginosa

Nobuhisa Masuda; Eiko Sakagawa; Satoshi Ohya; Naomasa Gotoh; Hideto Tsujimoto; Takeshi Nishino

ABSTRACT To test the possibility that MexX-MexY, a new set of efflux system components, is associated with OprM and contributes to intrinsic resistance in Pseudomonas aeruginosa, we constructed a series of isogenic mutants lacking mexXY and/ormexAB and/or oprM from a laboratory strain PAO1, and examined their susceptibilities to ofloxacin, tetracycline, erythromycin, gentamicin, and streptomycin. Loss of either MexXY or OprM from the MexAB-deficient mutant increased susceptibility to all agents tested, whereas loss of MexXY from the MexAB-OprM-deficient mutant caused no change in susceptibility. Introduction of an OprM expression plasmid decreased the susceptibility of themexAB-oprM-deficient-/mexXY-maintaining mutant, yet caused no change in the susceptibility of amexAB-oprM- and mexXY-deficient double mutant. Immunoblot analysis using anti-MexX polyclonal rabbit serum generated against synthetic oligopeptides detected expression of MexX in the PAO1 cells grown in medium containing tetracycline, erythromycin, or gentamicin, although expression of MexX was undetectable in the cells incubated in medium without any agent. These results suggest that MexXY induced by these agents is functionally associated with spontaneously expressed OprM and contributes to the intrinsic resistance to these agents.


Journal of Experimental Medicine | 2002

Multidrug Efflux Systems Play an Important Role in the Invasiveness of Pseudomonas aeruginosa

Yoichi Hirakata; Ramakrishnan Srikumar; Keith T. Poole; Naomasa Gotoh; Takashi Suematsu; Shigeru Kohno; Shimeru Kamihira; Robert E. W. Hancock; David P. Speert

Pseudomonas aeruginosa is an important opportunistic human pathogen. Certain strains can transmigrate across epithelial cells, and their invasive phenotype is correlated with capacity to cause invasive human disease and fatal septicemia in mice. Four multidrug efflux systems have been described in P. aeruginosa, however, their contribution to virulence is unclear. To clarify the role of efflux systems in invasiveness, P. aeruginosa PAO1 wild-type (WT) and its efflux mutants were evaluated in a Madin-Darby canine kidney (MDCK) epithelial cell monolayer system and in a murine model of endogenous septicemia. All efflux mutants except a ΔmexCD-oprJ deletion demonstrated significantly reduced invasiveness compared with WT. In particular, a ΔmexAB-oprM deletion strain was compromised in its capacity to invade or transmigrate across MDCK cells, and could not kill mice, in contrast to WT which was highly invasive (P < 0.0006) and caused fatal infection (P < 0.0001). The other mutants, including ΔmexB and ΔmexXY mutants, were intermediate between WT and the ΔmexAB-oprM mutant in invasiveness and murine virulence. Invasiveness was restored to the ΔmexAB-oprM mutant by complementation with mexAB-oprM or by addition of culture supernatant from MDCK cells infected with WT. We conclude that the P. aeruginosa MexAB-OprM efflux system exports virulence determinants that contribute to bacterial virulence.


Antimicrobial Agents and Chemotherapy | 2000

Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients

Shah Jalal; Oana Ciofu; Niels Høiby; Naomasa Gotoh; Bengt Wretlind

ABSTRACT Twenty P. aeruginosa isolates were collected from six cystic fibrosis (CF) patients, aged 27 to 33, in 1994 (9 isolates) and 1997 (11 isolates) at the CF Center, Copenhagen, Denmark, and were typed by pulse-field gel electrophoresis (PFGE) or ribotyping. Five of the patients had isolates with the same PFGE or ribotyping patterns in 1997 as in 1994, and ciprofloxacin had a two- to fourfold higher MIC for the isolates collected in 1997 than those from 1994. Genomic DNA was amplified for gyrA, parC, mexR, and nfxB by PCR and sequenced. Eleven isolates had mutations in gyrA, seven isolates had mutations at codon 83 (Thr to Ile), and four isolates had mutations at codon 87 (Asp to Asn or Tyr). Sixteen isolates had mutations in nfxB at codon 82 (Arg to Leu). Increased amounts of OprN were found in six isolates and OprJ in eight isolates as determined by immunoblotting. No isolates had mutations in parC or mexR. Six isolates had mutations in efflux pumps without gyrA mutations. The average number of mutations was higher in isolates from 1997 than in those from 1994. The results also suggested that efflux resistance mechanisms are more common in isolates from CF patients than in strains from urine and wounds from non-CF patients, in which mutations ingyrA and parC dominate (S. Jalal and B. Wretlind, Microb. Drug Resist. 4:257–261, 1998).


Antimicrobial Agents and Chemotherapy | 2001

Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates

Hyunjoo Pai; Jong-Won Kim; Jungmin Kim; Ji Hyang Lee; Kang Won Choe; Naomasa Gotoh

ABSTRACT In order to define the contributions of the mechanisms for carbapenem resistance in clinical strains of Pseudomonas aeruginosa, we investigated the presence of OprD, the expressions of the MexAB-OprM and MexEF-OprN systems, and the production of the β-lactamases for 44 clinical strains. All of the carbapenem-resistant isolates showed the loss of or decreased levels of OprD. Three strains overexpressed the MexAB-OprM efflux system by carrying mutations inmexR. These three strains had the amino acid substitution in MexR protein, Arg (CGG) → Gln (CAG), at the position of amino acid 70. None of the isolates, however, expressed the MexEF-OprN efflux system. For the characterization of β-lactamases, at least 13 isolates were the depressed mutants, and 12 strains produced secondary β-lactamases. Based on the above resistance mechanisms, the MICs of carbapenem for the isolates were analyzed. The MICs of carbapenem were mostly determined by the expression of OprD. The MICs of meropenem were two- to four-fold increased for the isolates which overexpressed MexAB-OprM in the background of OprD loss. However, the elevated MICs of meropenem for some individual isolates could not be explained. These findings suggested that other resistance mechanisms would play a role in meropenem resistance in clinical isolates of P. aeruginosa.


Antimicrobial Agents and Chemotherapy | 2003

MexXY-OprM Efflux Pump Is Necessary for Adaptive Resistance of Pseudomonas aeruginosa to Aminoglycosides

Didier Hocquet; Christelle Vogne; Farid El Garch; Anne Vejux; Naomasa Gotoh; Angela Lee; Olga Lomovskaya; Patrick Plésiat

ABSTRACT Exposure of Pseudomonas aeruginosa to aminoglycosides frequently selects for recalcitrant subpopulations exhibiting an unstable, “adaptive” resistance to these antibiotics. In this study, we investigated the implication in the phenomenon of MexXY-OprM, an active efflux system known to export aminoglycosides in P. aeruginosa. Immunoblotting experiments demonstrated that the transporter MexY, but not the outer membrane pore OprM, was overproduced during the post-drug exposure adaptation period in wild-type strain PAO1. Furthermore, MexY production was dependent upon the degree of bacterial exposure to gentamicin (drug concentration). In contrast to parental strain PAO1, mutants defective in MexXY or in OprM were unable to develop adaptive resistance. Altogether, these results indicate that the resistance process requires the rapid production of MexXY and the interaction of these proteins with the constitutively produced component OprM.


Journal of Antimicrobial Chemotherapy | 2009

Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima

Syuntaro Kouda; Masaru Ohara; Makoto Onodera; Yoshihiro Fujiue; Megumi Sasaki; Tadahiro Kohara; Seiya Kashiyama; Shizue Hayashida; Toshie Harino; Takahiro Tsuji; Hideyuki Itaha; Naomasa Gotoh; Akio Matsubara; Tsuguru Usui; Motoyuki Sugai

OBJECTIVES The aim of this study was to evaluate the dissemination of metallo-beta-lactamase (MBL)-encoding genes among multidrug-resistant (MDR) Pseudomonas aeruginosa isolates recovered from major hospitals in the Hiroshima region. METHODS During July to December from 2004 to 2006, a surveillance of eight major hospitals in the Hiroshima region identified 387 non-duplicate isolates resistant to imipenem (MIC >or= 16 mg/L). They were screened for resistance to amikacin (MIC >or= 64 mg/L) and ciprofloxacin (MIC >or= 4 mg/L) and MBL-encoding genes. The structure of the variable regions of the integrons was determined using PCR mapping. Clonality was assessed using PFGE and multilocus sequence typing (MLST). RESULTS The frequency of MBL-positive isolates in MDR P. aeruginosa isolates significantly increased from 42.3% in 2004 to 81.4% in 2006. Most of the MBL-positive isolates produced IMP-1 followed by VIM-2. The bla(IMP-1) and bla(VIM-2) genes were present in class 1 integrons. Characterization of the variable regions of the integron showed the presence of six different gene cassette arrays in bla(IMP-1) cassettes and a single array in bla(VIM-2) cassettes. The IMP-1 producers belonged to two clonal lineages using PFGE and MLST analyses and the integron variations correlated well with the clonal complexes. Among them, strains positive for a newly identified In113-derived bla(IMP-1) gene cassette array were most widely distributed in Hiroshima. CONCLUSIONS This study shows a dramatic increase in MBL genes, primarily bla(IMP-1), in MDR P. aeruginosa isolates in Hiroshima during these 3 years. In addition, MDR P. aeruginosa with the newly discovered In113-derived bla(IMP-1) gene cassette array appears to be clonally expanding.


Antimicrobial Agents and Chemotherapy | 2001

Pseudomonas aeruginosa Reveals High Intrinsic Resistance to Penem Antibiotics: Penem Resistance Mechanisms and Their Interplay

Kiyomi Okamoto; Naomasa Gotoh; Takeshi Nishino

ABSTRACT Pseudomonas aeruginosa exhibits high intrinsic resistance to penem antibiotics such as faropenem, ritipenem, AMA3176, sulopenem, Sch29482, and Sch34343. To investigate the mechanisms contributing to penem resistance, we used the laboratory strain PAO1 to construct a series of isogenic mutants with an impaired multidrug efflux system MexAB-OprM and/or impaired chromosomal AmpC β-lactamase. The outer membrane barrier of PAO1 was partially eliminated by inducing the expression of the plasmid-encodedEscherichia coli major porin OmpF. Susceptibility tests using the mutants and the OmpF expression plasmid showed that MexAB-OprM and the outer membrane barrier, but not AmpC β-lactamase, are the main mechanisms involved in the high intrinsic penem resistance of PAO1. However, reducing the high intrinsic penem resistance of PAO1 to the same level as that of penem-susceptible gram-negative bacteria such as E. coli required the loss of either both MexAB-OprM and AmpC β-lactamase or both MexAB-OprM and the outer membrane barrier. Competition experiments for penicillin-binding proteins (PBPs) revealed that the affinity of PBP 1b and PBP 2 for faropenem were about 1.8- and 1.5-fold lower, than the respective affinity for imipenem. Loss of the outer membrane barrier, MexAB, and AmpC β-lactamase increased the susceptibility of PAO1 to almost all penems tested compared to the susceptibility of the AmpC-deficient PAO1 mutants to imipenem. Thus, it is suggested that the high intrinsic penem resistance of P. aeruginosa is generated from the interplay among the outer membrane barrier, the active efflux system, and AmpC β-lactamase but not from the lower affinity of PBPs for penems.


Genome Biology and Evolution | 2014

Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen

Atsushi Iguchi; Yutaka Nagaya; Elizabeth Pradel; Tadasuke Ooka; Yoshitoshi Ogura; Keisuke Katsura; Ken Kurokawa; Kenshiro Oshima; Masahira Hattori; Julian Parkhill; Mohamed Sebaihia; Sarah J. Coulthurst; Naomasa Gotoh; Nicholas R. Thomson; Jonathan J. Ewbank; Tetsuya Hayashi

Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents.

Collaboration


Dive into the Naomasa Gotoh's collaboration.

Top Co-Authors

Avatar

Takeshi Nishino

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Naoki Hayashi

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Jun Okuda

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Hideto Tsujimoto

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Kentaro Kogure

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Kiyomi Okamoto

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Shu Minagawa

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Takashi Ohgita

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Takeshi Murata

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge