Naomi H. Philip
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Naomi H. Philip.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Naomi H. Philip; Christopher P. Dillon; Annelise G. Snyder; Patrick Fitzgerald; Meghan A. Wynosky-Dolfi; Erin E. Zwack; Baofeng Hu; Louise FitzGerald; Elizabeth A. Mauldin; Alan M. Copenhaver; Sunny Shin; Lei Wei; Matthew Parker; Jinghui Zhang; Andrew Oberst; Douglas R. Green; Igor E. Brodsky
Significance Pathogenic organisms express virulence factors that can inhibit immune signaling pathways. Thus, the immune system is faced with the challenge of eliciting an effective inflammatory response to pathogens that actively suppress inflammation. The mechanisms that regulate this response are largely undefined. The Yersinia virulence factor YopJ blocks NF-κB and MAPK signaling, resulting in reduced cytokine production and target cell death. Here, we find that caspase-8, RIPK1, and FADD are required for YopJ-induced cell death and show that mice lacking caspase-8 are severely susceptible to Yersinia infection and have defective proinflammatory cytokine production. These findings highlight a possible mechanism of immune defense that can overcome pathogen inhibition of cell-intrinsic proinflammatory immune responses. Toll-like receptor signaling and subsequent activation of NF-κB– and MAPK-dependent genes during infection play an important role in antimicrobial host defense. The YopJ protein of pathogenic Yersinia species inhibits NF-κB and MAPK signaling, resulting in blockade of NF-κB–dependent cytokine production and target cell death. Nevertheless, Yersinia infection induces inflammatory responses in vivo. Moreover, increasing the extent of YopJ-dependent cytotoxicity induced by Yersinia pestis and Yersinia pseudotuberculosis paradoxically leads to decreased virulence in vivo, suggesting that cell death promotes anti-Yersinia host defense. However, the specific pathways responsible for YopJ-induced cell death and how this cell death mediates immune defense against Yersinia remain poorly defined. YopJ activity induces processing of multiple caspases, including caspase-1, independently of inflammasome components or the adaptor protein ASC. Unexpectedly, caspase-1 activation in response to the activity of YopJ required caspase-8, receptor-interacting serine/threonine kinase 1 (RIPK1), and Fas-associated death domain (FADD), but not RIPK3. Furthermore, whereas RIPK3 deficiency did not affect YopJ-induced cell death or caspase-1 activation, deficiency of both RIPK3 and caspase-8 or FADD completely abrogated Yersinia-induced cell death and caspase-1 activation. Mice lacking RIPK3 and caspase-8 in their hematopoietic compartment showed extreme susceptibility to Yersinia and were deficient in monocyte and neutrophil-derived production of proinflammatory cytokines. Our data demonstrate for the first time to our knowledge that RIPK1, FADD, and caspase-8 are required for YopJ-induced cell death and caspase-1 activation and suggest that caspase-8–mediated cell death overrides blockade of immune signaling by YopJ to promote anti-Yersinia immune defense.
Immunity | 2017
Isabella Rauch; Katherine A. Deets; Daisy X. Ji; Jakob von Moltke; Jeannette L. Tenthorey; Angus Yiu-fai Lee; Naomi H. Philip; Janelle S. Ayres; Igor E. Brodsky; Karsten Gronert; Russell E. Vance
&NA; Intestinal epithelial cells (IECs) form a critical barrier against pathogen invasion. By generation of mice in which inflammasome expression is restricted to IECs, we describe a coordinated epithelium‐intrinsic inflammasome response in vivo. This response was sufficient to protect against Salmonella tissue invasion and involved a previously reported IEC expulsion that was coordinated with lipid mediator and cytokine production and lytic IEC death. Excessive inflammasome activation in IECs was sufficient to result in diarrhea and pathology. Experiments with IEC organoids demonstrated that IEC expulsion did not require other cell types. IEC expulsion was accompanied by a major actin rearrangement in neighboring cells that maintained epithelium integrity but did not absolutely require Caspase‐1 or Gasdermin D. Analysis of Casp1–/–Casp8–/– mice revealed a functional Caspase‐8 inflammasome in vivo. Thus, a coordinated IEC‐intrinsic, Caspase‐1 and ‐8 inflammasome response plays a key role in intestinal immune defense and pathology. Graphical Abstract Figure. No caption available. HighlightsNLRC4 activation in IECs leads to cell expulsion and IL‐18 and eicosanoid releaseNLRC4 in IECs is sufficient to protect from infection but can cause pathologyCaspase‐1 and Gasdermin D are not necessary for NLRC4 signaling in IECsCaspase‐8 is activated downstream of NLRC4 &NA; Rauch et al. show that selective activation of the NLRC4 inflammasome in intestinal epithelial cells leads to a coordinated response that includes cell expulsion and eicosanoid and cytokine release. This is not fully dependent on Caspase‐1, as cell expulsion can also be caused by Caspase‐8 activated by NLRC4.
Journal of Experimental Medicine | 2014
Meghan A. Wynosky-Dolfi; Annelise G. Snyder; Naomi H. Philip; Patrick J. Doonan; Maya C. Poffenberger; Daina Avizonis; Erin E. Zwack; Amber M. Riblett; Baofeng Hu; Till Strowig; Richard A. Flavell; Russell G. Jones; Bruce D. Freedman; Igor E. Brodsky
Salmonella lacking the TCA enzyme aconitase trigger NLRP3 inflammasome activation in infected macrophages, leading to elevated inflammatory responses and reduced virulence.
Mbio | 2014
Lawton K. Chung; Naomi H. Philip; Valentina A. Schmidt; Antonius Koller; Till Strowig; Richard A. Flavell; Igor E. Brodsky; James B. Bliska
ABSTRACT YopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails. A 15-LRR isoform in Y. pseudotuberculosis YPIII was recently shown to bind and inhibit caspase-1 via a YLTD motif in LRR 10, and attenuation of YopM− YPIII was reversed in mice lacking caspase-1, indicating that caspase-1 inhibition is a major virulence function of YopMYPIII. To determine if other YopM proteins inhibit caspase-1, we utilized Y. pseudotuberculosis strains natively expressing a 21-LRR isoform lacking the YLTD motif (YopM32777) or ectopically expressing a Y. pestis 15-LRR version with a functional (YopMKIM) or inactivated (YopMKIM D271A) YLTD motif. Results of mouse and macrophage infections with these strains showed that YopM32777, YopMKIM, and YopMKIM D271A inhibit caspase-1 activation, indicating that the YLTD motif is dispensable for this activity. Analysis of YopMKIM deletion variants revealed that LRRs 6 to 15 and the C-terminal tail are required to inhibit caspase-1 activation. YopM32777, YopMKIM, and YopMKIM deletion variants were purified, and binding partners in macrophage lysates were identified. Caspase-1 bound to YopMKIM but not YopM32777. Additionally, YopMKIM bound IQGAP1 and the use of Iqgap1−/− macrophages revealed that this scaffolding protein is important for caspase-1 activation upon infection with YopM− Y. pseudotuberculosis. Thus, while multiple YopM isoforms inhibit caspase-1 activation, their variable LRR domains bind different host proteins to perform this function and the LRRs of YopMKIM target IQGAP1, a novel regulator of caspase-1, in macrophages. IMPORTANCE Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert caspase-1-dependent responses through the action of effector proteins. For example, the Yersinia effector YopM inhibits caspase-1 activation by arresting inflammasome formation. This caspase-1 inhibitory activity has been studied in a specific YopM isoform, and in this case, the protein was shown to act as a pseudosubstrate to bind and inhibit caspase-1. Different Yersinia strains encode distinct YopM isoforms, many of which lack the pseudosubstrate motif. We studied additional isoforms and found that these YopM proteins inhibit caspase-1 activation independently of a pseudosubstrate motif. We also identified IQGAP1 as a novel binding partner of the Yersinia pestis YopMKIM isoform and demonstrated that IQGAP1 is important for caspase-1 activation in macrophages infected with Yersinia. Thus, this study reveals new insights into inflammasome regulation during Yersinia infection. Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert caspase-1-dependent responses through the action of effector proteins. For example, the Yersinia effector YopM inhibits caspase-1 activation by arresting inflammasome formation. This caspase-1 inhibitory activity has been studied in a specific YopM isoform, and in this case, the protein was shown to act as a pseudosubstrate to bind and inhibit caspase-1. Different Yersinia strains encode distinct YopM isoforms, many of which lack the pseudosubstrate motif. We studied additional isoforms and found that these YopM proteins inhibit caspase-1 activation independently of a pseudosubstrate motif. We also identified IQGAP1 as a novel binding partner of the Yersinia pestis YopMKIM isoform and demonstrated that IQGAP1 is important for caspase-1 activation in macrophages infected with Yersinia. Thus, this study reveals new insights into inflammasome regulation during Yersinia infection.
Frontiers in Cellular and Infection Microbiology | 2012
Naomi H. Philip; Igor E. Brodsky
Cell death plays a central role in host-pathogen interactions, as it can eliminate the pathogens replicative niche and provide pro-inflammatory signals necessary for an effective immune response; conversely, cell death can allow pathogens to eliminate immune cells and evade anti-microbial effector mechanisms. In response to developmental signals or cell-intrinsic stresses, the executioner caspases-3 and -7 mediate apoptotic cell death, which is generally viewed as immunologically silent or immunosuppressive. A proinflammatory form of cell death that requires caspase-1, termed pyroptosis, is activated in response to microbial products within the host cytosol or disruption of cellular membranes by microbial pathogens. Infection by the bacterial pathogen Yersinia has features of both apoptosis and pyroptosis. Cell death and caspase-1 processing in Yersinia-infected cells occur in response to inhibition of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ. However, the molecular basis of YopJ-induced cell death, and the role of different death pathways in anti-Yersinia immune responses remain enigmatic. Here, we discuss the role that cell death may play in inducing specific pro-inflammatory signals that shape innate and adaptive immune responses against Yersinia infection.
Mbio | 2015
Erin E. Zwack; Annelise G. Snyder; Meghan A. Wynosky-Dolfi; Gordon Ruthel; Naomi H. Philip; Melanie M. Marketon; Matthew S. Francis; James B. Bliska; Igor E. Brodsky
ABSTRACT Type III secretion systems (T3SS) translocate effector proteins into target cells in order to disrupt or modulate host cell signaling pathways and establish replicative niches. However, recognition of T3SS activity by cytosolic pattern recognition receptors (PRRs) of the nucleotide-binding domain leucine rich repeat (NLR) family, either through detection of translocated products or membrane disruption, induces assembly of multiprotein complexes known as inflammasomes. Macrophages infected with Yersinia pseudotuberculosis strains lacking all known effectors or lacking the translocation regulator YopK induce rapid activation of both the canonical NLRP3 and noncanonical caspase-11 inflammasomes. While this inflammasome activation requires a functional T3SS, the precise signal that triggers inflammasome activation in response to Yersinia T3SS activity remains unclear. Effectorless strains of Yersinia as well as ΔyopK strains translocate elevated levels of T3SS substrates into infected cells. To dissect the contribution of pore formation and translocation to inflammasome activation, we took advantage of variants of YopD and LcrH that separate these functions of the T3SS. Notably, YopD variants that abrogated translocation but not pore-forming activity failed to induce inflammasome activation. Furthermore, analysis of individual infected cells revealed that inflammasome activation at the single-cell level correlated with translocated levels of YopB and YopD themselves. Intriguingly, LcrH mutants that are fully competent for effector translocation but produce and translocate lower levels of YopB and YopD also fail to trigger inflammasome activation. Our findings therefore suggest that hypertranslocation of YopD and YopB is linked to inflammasome activation in response to the Yersinia T3SS. IMPORTANCE The innate immune response is critical to effective clearance of pathogens. Recognition of conserved virulence structures and activities by innate immune receptors such as NLRs constitute one of the first steps in mounting the innate immune response. However, pathogens such as Yersinia actively evade or subvert components of host defense, such as inflammasomes. The T3SS-secreted protein YopK is an essential virulence factor that limits translocation of other Yops, thereby limiting T3SS-induced inflammasome activation. However, what triggers inflammasome activation in cells infected by YopK-deficient Yersinia is not clear. Our findings indicate that hypertranslocation of pore complex proteins promotes inflammasome activation and that YopK prevents inflammasome activation by the T3SS by limiting translocation of YopD and YopB themselves. The innate immune response is critical to effective clearance of pathogens. Recognition of conserved virulence structures and activities by innate immune receptors such as NLRs constitute one of the first steps in mounting the innate immune response. However, pathogens such as Yersinia actively evade or subvert components of host defense, such as inflammasomes. The T3SS-secreted protein YopK is an essential virulence factor that limits translocation of other Yops, thereby limiting T3SS-induced inflammasome activation. However, what triggers inflammasome activation in cells infected by YopK-deficient Yersinia is not clear. Our findings indicate that hypertranslocation of pore complex proteins promotes inflammasome activation and that YopK prevents inflammasome activation by the T3SS by limiting translocation of YopD and YopB themselves.
Blood | 2013
Rebecca M. May; Mariko Okumura; Chin-Jung Hsu; Hamid Bassiri; Enjun Yang; Gregory Rak; Emily M. Mace; Naomi H. Philip; Weiguo Zhang; Tobias Baumgart; Jordan S. Orange; Kim E. Nichols; Taku Kambayashi
Signaling pathways leading to natural killer (NK)-cell effector function are complex and incompletely understood. Here, we investigated the proximal signaling pathways downstream of the immunotyrosine-based activation motif (ITAM) bearing activating receptors. We found that the adaptor molecule SH2 domain-containing leukocyte protein of 76 kD (SLP-76) is recruited to microclusters at the plasma membrane in activated NK cells and that this is required for initiation of downstream signaling and multiple NK-cell effector functions in vitro and in vivo. Surprisingly, we found that 2 types of proximal signaling complexes involving SLP-76 were formed. In addition to the canonical membrane complex formed between SLP-76 and linker for activation of T cells (LAT) family members, a novel LAT family-independent SLP-76-dependent signaling pathway was identified. The LAT family-independent pathway involved the SH2 domain of SLP-76 and adhesion and degranulation-promoting adaptor protein (ADAP). Both the LAT family-dependent and ADAP-dependent pathway contributed to interferon-gamma production and cytotoxicity; however, they were not essential for other SLP-76-dependent events, including phosphorylation of AKT and extracellular signal-related kinase and cellular proliferation. These results demonstrate that NK cells possess an unexpected bifurcation of proximal ITAM-mediated signaling, each involving SLP-76 and contributing to optimal NK-cell function.
Cell Host & Microbe | 2015
Charles V. Rosadini; Ivan Zanoni; Erin R. Green; Michelle K. Paczosa; Naomi H. Philip; Igor E. Brodsky; Joan Mecsas; Jonathan C. Kagan
During bacterial infections, Toll-like receptor 4 (TLR4) signals through the MyD88- and TRIF-dependent pathways to promote pro-inflammatory and interferon (IFN) responses, respectively. Bacteria can inhibit the MyD88 pathway, but if the TRIF pathway is also targeted is unclear. We demonstrate that, in addition to MyD88, Yersinia pseudotuberculosis inhibits TRIF signaling through the type III secretion system effector YopJ. Suppression of TRIF signaling occurs during dendritic cell (DC) and macrophage infection and prevents expression of type I IFN and pro-inflammatory cytokines. YopJ-mediated inhibition of TRIF prevents DCs from inducing natural killer (NK) cell production of antibacterial IFNγ. During infection of DCs, YopJ potently inhibits MAPK pathways but does not prevent activation of IKK- or TBK1-dependent pathways. This singular YopJ activity efficiently inhibits TLR4 transcription-inducing activities, thus illustrating a simple means by which pathogens impede innate immunity.
Journal of Experimental Medicine | 2017
Lance W. Peterson; Naomi H. Philip; Alexandra DeLaney; Meghan A. Wynosky-Dolfi; Kendra Asklof; Falon Gray; Ruth Choa; Elisabet Bjanes; Elisabeth L. Buza; Baofeng Hu; Christopher P. Dillon; Douglas R. Green; Scott B. Berger; Peter J. Gough; John Bertin; Igor E. Brodsky
Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific antipathogen responses, a process termed “effector-triggered immunity.” The Gram-negative bacterial pathogen Yersinia inactivates critical proteins of the NF-&kgr;B and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-&kgr;B, and MAPK signaling. Through the targeted disruption of RIPK1 kinase activity, which selectively disrupts RIPK1-dependent cell death, we now reveal that Yersinia-induced apoptosis is critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. We demonstrate that this apoptotic response provides a cell-extrinsic signal that promotes optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase–induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.
PLOS Pathogens | 2016
Naomi H. Philip; Alexandra DeLaney; Lance W. Peterson; Melanie Santos-Marrero; Jennifer T. Grier; Yan Sun; Meghan A. Wynosky-Dolfi; Erin E. Zwack; Baofeng Hu; Tayla M. Olsen; Anthony Rongvaux; Scott D. Pope; Carolina B. López; Andrew Oberst; Daniel P. Beiting; Jorge Henao-Mejia; Igor E. Brodsky
Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8 DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.