Naomi Halachmi
Technion – Israel Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Naomi Halachmi.
Neuron | 1994
Karen L. Schulze; J.Troy Littleton; Adi Salzberg; Naomi Halachmi; Michael Stern; Zeev Lev; Hugo J. Bellen
The mammalian homolog of the yeast Sec1p, n-Sec1/Munc-18 has been demonstrated to bind the presynaptic membrane protein syntaxin, a putative synaptic vesicle docking protein. To determine the role of n-Sec1/Munc-18 in neurotransmitter release in vivo, we have overexpressed the Drosophila homolog, rop, in third instar larvae and measured the electrophysiological consequences at the neuromuscular junction. A 3- to 5-fold induction of the rop protein causes a dramatic decrease in neurotransmitter release, suggesting rop may restrict the ability of vesicles to dock or of docked vesicles to fuse. Consistent with this hypothesis, rop overexpression also reduces the number of spontaneous vesicle fusions by more than 50%, and repetitive stimulation results in significant decreases in evoked responses similar to those observed in rab3a mutant mice. However, rop overexpression does not alter significantly the Ca2+ dependence of neurotransmitter release. We propose that the Drosophila n-Sec1/Munc-18 homolog plays a negative role in neurotransmitter release in vivo, in addition to its previously identified positive function, possibly by modulation of docking of synaptic vesicles or activation of a pre-fusion complex at the active zone.
Journal of Neurochemistry | 2002
Naomi Halachmi; Zeev Lev
Abstract: The Sec1 family, a novel family of proteins involved in synaptic transmission and general secretion, is described. To date, 14 members of this family have been identified: four yeast proteins, Sec1, Sly1, Slp1/Vps33, and Vps45/Stt10; three nematode proteins, Unc‐18 and the homologues of Sly1 and Slp1; the Drosophila Rop; and six mammalian proteins, the rat Munc‐18/n‐Sec1/rbSec1A and rbSec1B, the mouse Munc‐18b/muSec1 and Munc‐18c, and the bovine Munc‐18 and mSec1. The mammalian proteins share 44–63% sequence identity with the nematode Unc‐18 and Drosophila Rop proteins and 20–29% with the yeast proteins and their nematode homologues. The Sec1 proteins are mostly hydrophilic and lack a transmembrane domain. Nevertheless, Sec1 proteins are found as membrane‐bound proteins. Some of them are also found as soluble, cytoplasmic proteins. Binding of the rat brain Sec1 to the presynaptic membrane may be due to strong interaction with syntaxin, an integral component of this membrane. The rat brain Sec1 is also bound to Cdk5, a neural cyclin‐dependent kinase. The Sec1 proteins play a positive role in exocytosis. Loss of function mutations in SEC1, SLY1, or SLP1 result in blocking of protein transport between distinct yeast subcellular compartments. Inactivation of unc‐18 and rop results in inhibition of neurotransmitter release and, in the case of rop, inhibition of general secretion as well. In addition, studies of Rop and n‐Sec1 indicate that they also play a negative role in synaptic transmission, mediated by their interaction with syntaxin. A working model addressing the dual regulative role of the Sec1 proteins in secretion is presented.
Mechanisms of Development | 2001
Elad Segev; Naomi Halachmi; Adi Salzberg; Nissim Ben-Arie
The evolutionarily conserved basic helix-loop-helix (bHLH) transcription factors play important roles during development. Here we report the identification of Nato3 (nephew of atonal fer3) orthologs in Drosophila, C. elegans, mouse, and man, all of which share a high degree of similarity within the bHLH domain. Expression analysis revealed Nato3 transcripts in the central nervous system of both fly and mouse embryos. In the fly, Dnato3 is highly expressed in 9-15h embryos in a few ventral nerve cord cells and a subset of neurons in the brain. In mouse, the MNato3 transcripts were detected from embryonic day 7 until 5 weeks postnatally, with highest levels in the midbrain, thalamus, hypothalamus, pons, and medulla oblongata. In contrast to the brain, expression in the spinal cord was limited to the embryonic stages.
Developmental Biology | 2003
Cynthia Vied; Naomi Halachmi; Adi Salzberg; Jamila I. Horabin
The sex determination master switch, Sex-lethal, has been shown to regulate the mitosis of early germ cells in Drosophila melanogaster. Sex-lethal is an RNA binding protein that regulates splicing and translation of specific targets in the soma, but the germline targets are unknown. In an experiment aimed at identifying targets of Sex-lethal in early germ cells, the RNA encoded by gutfeeling, the Drosophila homolog of Ornithine Decarboxylase Antizyme, was isolated. gutfeeling interacts genetically with Sex-lethal. It is not only a target of Sex-lethal, but also appears to regulate the nuclear entry and overall levels of Sex-lethal in early germ cells. This regulation of Sex-lethal by gutfeeling appears to occur downstream of the Hedgehog signal. We also show that Hedgehog, Gutfeeling, and Sex-lethal function to regulate Cyclin B, providing a link between Sex-lethal and mitosis.
Developmental Biology | 2011
Nirit Egoz-Matia; Atalya Nachman; Naomi Halachmi; Moran Toder; Yifat Klein; Adi Salzberg
In spite of our conceptual view of how differential gene expression is used to define different cell identities, we still do not understand how different cell identities are translated into actual cell properties. The example discussed here is that of the fly wing, which is composed of two main cell types: vein and intervein cells. These two cell types differ in many features, including their adhesive properties. One of the major differences is that intervein cells express integrins, which are required for the attachment of the two wing layers to each other, whereas vein cells are devoid of integrin expression. The major signaling pathways that divide the wing to vein and intervein domains have been characterized. However, the genetic programs that execute these two alternative differentiation programs are still very roughly drawn. Here we identify the bHLH protein Delilah (Dei) as a mediator between signaling pathways that specify intervein cell-fate and one of the most significant realizators of this fate, βPS integrin. Deis expression is restricted to intervein territories where it acts as a potent activator of βPS integrin expression. In the absence of normal Dei activity the level of βPS integrin is reduced, leading to a failure of adhesion between the dorsal and ventral wing layers and a consequent formation of wing blisters. The effect of Dei on βPS expression is not restricted to the wing, suggesting that Dei functions as a general genetic switch, which is turned on wherever a sticky cell-identity is determined and integrin-based adhesion is required.
Journal of Visualized Experiments | 2012
Naomi Halachmi; Atalya Nachman; Adi Salzberg
Proprioception is the ability to sense the motion, or position, of body parts by responding to stimuli arising within the body. In fruitflies and other insects proprioception is provided by specialized sensory organs termed chordotonal organs (ChOs) 2. Like many other organs in Drosophila, ChOs develop twice during the life cycle of the fly. First, the larval ChOs develop during embryogenesis. Then, the adult ChOs start to develop in the larval imaginal discs and continue to differentiate during metamorphosis. The development of larval ChOs during embryogenesis has been studied extensively 10,11,13,15,16. The centerpiece of each ChO is a sensory unit composed of a neuron and a scolopale cell. The sensory unit is stretched between two types of accessory cells that attach to the cuticle via specialized epidermal attachment cells 1,9,14. When a fly larva moves, the relative displacement of the epidermal attachment cells leads to stretching of the sensory unit and consequent opening of specific transient receptor potential vanilloid (TRPV) channels at the outer segment of the dendrite 8,12. The elicited signal is then transferred to the locomotor central pattern generator circuit in the central nervous system. Multiple ChOs have been described in the adult fly 7. These are located near the joints of the adult fly appendages (legs, wings and halters) and in the thorax and abdomen. In addition, several hundreds of ChOs collectively form the Johnstons organ in the adult antenna that transduce acoustic to mechanical energy 3,5,17,4. In contrast to the extensive knowledge about the development of ChOs in embryonic stages, very little is known about the morphology of these organs during larval stages. Moreover, with the exception of femoral ChOs 18 and Johnstons organ, our knowledge about the development and structure of ChOs in the adult fly is very fragmentary. Here we describe a method for staining and visualizing ChOs in third instar larvae and pupae. This method can be applied together with genetic tools to better characterize the morphology and understand the development of the various ChOs in the fly.
Developmental Biology | 2010
Yifat Klein; Naomi Halachmi; Nirit Egoz-Matia; Moran Toder; Adi Salzberg
Coordinated locomotion of Drosophila larvae depends on accurate patterning and stable attachment to the cuticle of both muscles and proprioceptors (chordotonal organs). Unlike muscle spindles in mammals, the fly chordotonal organs are not embedded in the body-wall muscles. Yet, the contractile system (muscles and tendons) and the chordotonal organs constitute two parts of a single functional unit that controls locomotion, and thus must be patterned in full coordination. It is not known how such coordination is achieved. Here we show that the positioning and differentiation of the migrating chordotonal organs are instructed by Stripe, the same transcription factor that promotes tendon cell specification and differentiation and is required for normal patterning of the contractile system. Our data demonstrate that although chordotonal organs are patterned in a Stripe-dependent mechanism similarly to muscles, this mechanism is independent of Stripe activity in tendon cells. Thus, the two parts of the locomotive system use similar but independent patterning mechanisms that converge to form a functional unit. Stripe plays at least a dual role in chordotonal development. It is required within the ligament cells for terminal differentiation and proper migration, without which no induction of ligament attachment cells takes place. Stripes activity is then necessary within the recruited cells for their differentiation as attachment cells. Similarly to the biphasic differentiation program of tendons, terminal differentiation of chordotonal attachment cells is associated with sequential activation of the two Stripe isoforms-Stripe B and Stripe A.
Developmental Dynamics | 2007
Naomi Halachmi; Karen L. Schulze; Adi Inbal; Adi Salzberg
Additional sex combs (Asx) is thought to function in protein complexes of both the Trithorax and Polycomb groups, but very little is known about its developmental roles. Here, we present a detailed analysis of Asxs role in antennal development. We show that loss of Asx in the antennal disc causes a complex phenotype, which consists of distal antenna‐to‐leg transformations and outgrowth of ectopic leg‐like appendages from the Dpp‐expressing domain of the disc. Our analyses suggest that these phenotypes are caused mainly by segment‐specific de‐repression of Antp and expansion of wg expression. We thus conclude that Asx functions normally to repress Antp and to restrict wg expression in specific regions of the developing disc. We also show that, in the absence of Asxs function, Antp expression does not lead to efficient repression of the antennal‐determining gene hth, suggesting that Asx is also required for the repression of hth by Antp. Developmental Dynamics 236:2118–2130, 2007.
Developmental Biology | 2015
Atalya Nachman; Naomi Halachmi; Nira Matia; Doron Manzur; Adi Salzberg
To understand development we need to understand how transcriptional regulatory mechanisms are employed to confer different cell types with their unique properties. Nonetheless it is also critical to understand how such mechanisms are used to confer different cell types with common cellular properties, such as the ability to adhere to the extracellular matrix. To decode how adhesion is regulated in cells stemming from different pedigrees we analyzed the regulatory region that drives the expression of Dei, which is a transcription factor that serves as a central determinant of cell adhesion, particularly by inducing expression of βPS-integrin. We show that activation of dei transcription is mediated through multiple cis regulatory modules, each driving transcription in a spatially and temporally restricted fashion. Thus the dei gene provides a molecular platform through which cell adhesion can be regulated at the transcriptional level in different cellular milieus. Moreover, we show that these regulatory modules respond, often directly, to central regulators of cell identity in each of the dei-expressing cell types, such as D-Mef2 in muscle cells, Stripe in tendon cells and Blistered in wing intervein cells. These findings suggest that the acquirement of common cellular properties shared by different cell types is embedded within the unique differentiation program dictated to each of these cells by the major determinants of its identity.
Developmental Biology | 2016
Naomi Halachmi; Atalya Nachman; Adi Salzberg
This work describes unknown aspects of chordotonal organ (ChO) morphogenesis revealed in post-embryonic stages through the use of new fluorescently labeled markers. We show that towards the end of embryogenesis a hitherto unnoticed phase of cell migration commences in which the cap cells of the ventral ChOs elongate and migrate towards their prospective attachment sites. This migration and consequent cell attachment generates a continuous zigzag line of proprioceptors, stretching from the ventral midline to a dorsolateral position in each abdominal segment. Our observation that the cap cell of the ventral-most ChO attaches to a large tendon cell near the midline provides the first evidence for a direct physical connection between the contractile and proprioceptive systems in Drosophila. Our analysis has also provided an answer to a longstanding enigma that is what anchors the neurons of the ligamentless ventral ChOs on their axonal side. We identified a new type of ChO attachment cell, which binds to the scolopale cells of these organs, thus behaving like a ligament cell, but on the other hand exhibits all the typical features of a ChO attachment cell and is critical for the correct anchoring of these organs.