Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi Walsh is active.

Publication


Featured researches published by Naomi Walsh.


Cancer Letters | 2011

RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation

Naomi Walsh; Annemarie Larkin; Niall Swan; Kevin C. Conlon; Paul Dowling; Ray McDermott; Martin Clynes

We previously identified Hop as over expressed in invasive pancreatic cancer cell lines and malignant tissues of pancreatic cancer patients, suggesting an important role for Hop in the biology of invasive pancreatic cancer. Hop is a co-chaperone protein that binds to both Hsp70/Hsp90. We hypothesised that by targeting Hop, signalling pathways modulating invasion and client protein stabilisation involving Hsp90-dependent complexes may be altered. In this study, we show that Hop knockdown by small interfering (si)RNA reduces the invasion of pancreatic cancer cells, resulting in decreased expression of the downstream target gene, matrix metalloproteinases-2 (MMP-2). Hop in conditioned media co-immunoprecipitates with MMP-2, implicating a possible extracellular function for Hop. Knockdown of Hop expression also reduced expression levels of Hsp90 client proteins, HER2, Bcr-Abl, c-MET and v-Src. Furthermore, Hop is strongly expressed in high grade PanINs compared to lower PanIN grades, displaying differential localisation in invasive ductal pancreatic cancer, indicating that the localisation of Hop is an important factor in pancreatic tumours. Our data suggests that the attenuation of Hop expression inactivates key signal transduction proteins which may decrease the invasiveness of pancreatic cancer cells possibly through the modulation of Hsp90 activity. Therefore, targeting Hop in pancreatic cancer may constitute a viable strategy for targeted cancer therapy.


BMC Urology | 2009

Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma

Naomi Walsh; Annemarie Larkin; Susan Kennedy; Lisa Connolly; Jo Ballot; Wei Ooi; Giuseppe Gullo; John Crown; Martin Clynes; Lorraine O'Driscoll

BackgroundRenal cell carcinoma patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease.MethodsIn this retrospective study the expression of two of these transporter efflux pumps, namely MDR-1 P-gp (ABCB1) and MRP-1 (ABCC1) were studied by immunohistochemistry in archival material from 95 renal cell carcinoma patients.ResultsIn the first study investigating MDR-1 P-gp and MRP-1 protein expression patterns in renal cell carcinoma patients, high levels of expression of both efflux pumps are observed with 100% of tumours studied showing MDR-1 P-gp and MRP-1 positivity.ConclusionAlthough these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type.


Proteome Science | 2009

Identification of pancreatic cancer invasion-related proteins by proteomic analysis

Naomi Walsh; Norma O'Donovan; Susan Kennedy; Michael Henry; Paula Meleady; Martin Clynes; Paul Dowling

BackgroundMarkers of pancreatic cancer invasion were investigated in two clonal populations of the cell line, MiaPaCa-2, Clone #3 (high invasion) and Clone #8 (low invasion) using proteomic profiling of an in vitro model of pancreatic cancer.Materials and methodsUsing 2D-DIGE followed by MALDI-TOF MS, two clonal sub-populations of the pancreatic cancer cell line, MiaPaCa-2 with high and low invasive capacities were incubated on matrigel 24 hours prior to analysis to stimulate cell-ECM contact and mimic in vivo interaction with the basement membrane.ResultsSixty proteins were identified as being differentially expressed (> 1.2 fold change and p ≤ 0.05) between Clone #3 and Clone #8. Proteins found to have higher abundance levels in the highly invasive Clone #3 compared to the low invasive Clone #8 include members of the chaperone activity proteins and cytoskeleton constituents whereas metabolism-associated and catalytic proteins had lower abundance levels. Differential protein expression levels of ALDH1A1, VIM, STIP1 and KRT18 and GAPDH were confirmed by immunoblot. Using RNAi technology, STIP1 knockdown significantly reduced invasion and proliferation of the highly invasive Clone #3. Knockdown of another target, VIM by siRNA in Clone #3 cells also resulted in decreased invasion abilities of Clone #3. Elevated expression of STIP1 was observed in pancreatic tumour tissue compared to normal pancreas, whereas ALDH1A1 stained at lower levels in pancreatic tumours, as detected by immunohistochemistry.ConclusionIdentification of targets which play a role in the highly invasive phenotype of pancreatic cancer may help to understand the biological behaviour, the rapid progression of this cancer and may be of importance in the development of new therapeutic strategies for pancreatic cancer.


Expert Review of Anticancer Therapy | 2010

Challenges of drug resistance in the management of pancreatic cancer

Rizwan Sheikh; Naomi Walsh; Martin Clynes; Robert O'Connor; Ray McDermott

The current treatment of choice for metastatic pancreatic cancer involves single-agent gemcitabine or a combination of gemcitabine with capecitabine or erlotinib (a tyrosine kinase inhibitor). Only 25–30% of patients respond to this treatment and patients who do respond initially ultimately exhibit disease progression. Median survival for pancreatic cancer patients has reached a plateau due to inherent and acquired resistance to these agents. Key molecular factors implicated in this resistance include: deficiencies in drug uptake, alteration of drug targets, activation of DNA repair pathways, resistance to apoptosis and the contribution of the tumor microenvironment. Moreover, for newer agents including tyrosine kinase inhibitors, overexpression of signaling proteins, mutations in kinase domains, activation of alternative pathways, mutations of genes downstream of the target and/or amplification of the target represent key challenges for treatment efficacy. Here we will review the contribution of known mechanisms and markers of resistance to key pancreatic cancer drug treatments.


British Journal of Cancer | 2010

Membrane transport proteins in human melanoma: associations with tumour aggressiveness and metastasis.

Naomi Walsh; Susan Kennedy; Annemarie Larkin; Dimitrios Tryfonopoulos; Alex J. Eustace; Thamir Mahgoub; Catherine Conway; Irene Oglesby; Denis M. Collins; Jo Ballot; Wei Ooi; Giuseppe Gullo; Martin Clynes; John Crown; Lorraine O'Driscoll

Background:Malignant melanoma, generally described as incurable, is notoriously refractory to chemotherapy. The mechanisms contributing to this have not yet been defined and the contributions of drug efflux pumps, implicated in chemo-resistance of many other cancer types, have not been extensively investigated in melanoma.Methods:In this study, expression of multi-drug resistant (MDR1/P-gp and MRP-1) proteins was examined, by immunohistochemistry, in archival specimens from 134 melanoma patients. This included 92 primary tumours and 42 metastases.Results:On assessing all specimens, MRP-1 and MDR1/P-gp expression was found to be common, with the majority (81%) of melanomas expressing at least one of these efflux pumps. Although there is significant association between expression of these pumps (P=0.007), MRP-1 was found to be the predominant (67% of cases) form detected. χ2 analysis showed significant associations between expression of MRP-1 and/or MDR1/P-gp and the aggressive nature of this disease specifically increased Breslows depth, Clarks level and spread to lymph nodes. This association with aggressiveness and spread is further supported by the observation that a significantly higher percentage of metastases, than primary tumours, express MRP-1 (91% vs 57%; P<0.0001) and MDR1/P-gp (74% vs 50%; P=0.010).Conclusion:The predominant expression of these pumps and, in particular, MRP-1 suggests that they may be important contributors to the inherent aggressive and resistant nature of malignant melanoma.


Journal of Proteomics | 2008

Aldehyde dehydrogenase 1A1 and gelsolin identified as novel invasion-modulating factors in conditioned medium of pancreatic cancer cells

Naomi Walsh; Paul Dowling; Norma O'Donovan; Michael Henry; Paula Meleady; Martin Clynes

Conditioned medium (CM) from clonal sub-populations of the pancreatic cancer cell line, MiaPaCa-2 with differing invasive abilities, were examined for their effect on in vitro invasion. Conditioned medium from Clone #3 (CM#3) strongly promoted invasion, while CM from Clone #8 (CM#8) inhibited invasion in vitro. 2D DIGE followed by MALDI-TOF MS analysis of CM#3 and CM#8 identified 41 proteins which were differentially regulated; 27 proteins were down-regulated and 14 proteins up-regulated in the invasion-promoting CM#3 when compared to CM#8. Western blotting analysis confirmed the down-regulated expression of gelsolin and the up-regulation of aldehyde dehydrogenase 1A1 in CM#3. Down-regulation of aldehyde dehydrogenase 1A1 in Clone #3 CM and gelsolin levels in Clone #8 CM by siRNA transfection revealed an important involvement of these proteins in promoting and inhibiting invasion in these pancreatic cancer cell lines.


Proteomics | 2008

Membrane and membrane‐associated proteins involved in the aggressive phenotype displayed by highly invasive cancer cells

Paul Dowling; Naomi Walsh; Martin Clynes

Invasion, the penetration of tumour cells into adjacent tissues, is a fundamental characteristic of malignant carcinomas and a first step in the metastatic process. The molecular mechanisms involved in tumour cell invasion are complex, but over the last couple of decades the knowledge base has grown quite considerably and many proteins with important roles in invasion have been identified and characterised. Benign tumours typically are encapsulated, which inhibits their ability to behave in a malignant manner, meaning these tumours do not grow in a location‐limited less aggressive manner, do not invade surrounding tissues and do not metastasise. The ability of malignant tumours to invade and metastasise is the major cause of death for cancer patients. A greater insight into the molecular basis of cancer invasion and metastasis will lead to the development of novel therapies and specific panels of biomarkers for use in the treatment and diagnosis/monitoring in many types of metastatic cancer.


Journal of Experimental & Clinical Cancer Research | 2009

Alterations in integrin expression modulates invasion of pancreatic cancer cells.

Naomi Walsh; Martin Clynes; John Crown; Norma O'Donovan

BackgroundFactors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood.MethodsIn this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression.ResultsClone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin β1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion.ConclusionOur results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.


Tumor Biology | 2014

7B7: a novel antibody directed against the Ku70/Ku80 heterodimer blocks invasion in pancreatic and lung cancer cells

Dermot O’Sullivan; Michael Henry; Helena Joyce; Naomi Walsh; Edel Mc Auley; Paul Dowling; Niall Swan; Michael Moriarty; Paul Barnham; Martin Clynes; Annemarie Larkin

Development of more effective therapeutic strategies for cancers of high unmet need requires the continued discovery of disease-specific protein targets for therapeutic antibody targeting. In order to identify novel proteins associated with cancer cell invasion/metastasis, we present here an alternative to antibody targeting of cell surface proteins with an established role in invasion; our functional antibody screening approach involves the isolation and selection of MAbs that are primarily screened for their ability to inhibit tumour invasion. A clonal population of the Mia PaCa-2, a pancreatic ductal adenocarcinoma (PDAC) cell line, which displays a highly invasive phenotype, was used to generate MAbs with the objective of identifying membrane targets directly involved in cancer invasion. Selected MAb 7B7 can significantly reduce invasion in a dose-responsive manner in Mia PaCa-2 clone 3 and DLKP-M squamous lung carcinoma cells. Using immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis, the target antigen of anti-invasive antibody, 7B7, was determined to be the heterodimeric Ku antigen, Ku70/80, a core protein composed of the Ku70 and Ku80 subunits which is involved in non-homologous end-joining (NHEJ) DNA repair. RNA interference-mediated knockdown of Ku70 and Ku80 resulted in a marked decrease in the invasive capacity of Mia PaCa-2 clone 3 and DLKP-M cells, indicating that Ku70/Ku80 is functionally involved in pancreatic and lung cancer invasion. Immunohistochemical analysis demonstrated Ku70/Ku80 immunoreactivity in 37 PDAC tumours, indicating that this heterodimer is highly expressed in this aggressive cancer type. This study demonstrates that a functional MAb screening approach coupled with immunoprecipitation/proteomic analyses can be successfully applied to identify functional anti-invasive MAbs and potential novel targets for therapeutic antibody targeting.


International Journal of Oncology | 2015

Kinase inhibitor screening identifies CDK4 as a potential therapeutic target for melanoma

Thamir Mahgoub; Alex J. Eustace; Denis M. Collins; Naomi Walsh; Norma O'Donovan; John Crown

Despite recent advances in targeted therapies and immunotherapies metastatic melanoma remains only rarely curable. The objective of the present study was to identify novel therapeutic targets for metastatic melanoma. A library of 160 well-characterised and potent protein kinase inhibitors was screened in the BRAF mutant cell line Sk-Mel-28, and the NRAS mutant Sk-Mel-2, using proliferation assays. Of the 160 inhibitors tested, 20 achieved >50% growth inhibition in both cell lines. Six of the 20 were cyclin dependent kinase (CDK) inhibitors, including two CDK4 inhibitors. Fascaplysin, a synthetic CDK4 inhibitor, was further tested in 8 melanoma cell lines. The concentration of fascaplysin required to inhibit growth by 50% (IC50 value) ranged from 0.03 to 0.22 μM. Fascaplysin also inhibited clonogenic growth and induced apoptosis. Sensitivity to PD0332991, a therapeutic CDK4/6 inhibitor was also evaluated in the melanoma cell lines. PD0332991 IC50 values ranged from 0.13 to 2.29 μM. Similar to fascaplysin, PD0332991 inhibited clonogenic growth of melanoma cells and induced apoptosis. Higher levels of CDK4 protein correlated with lower sensitivity to PD0332991 in the cell lines. Combined treatment with PD0332991 and the BRAF inhibitor PLX4032, showed additive anti-proliferative effects in the BRAF mutant cell line Malme-3M. In summary, targeting CDK4 inhibits growth and induces apoptosis in melanoma cells in vitro, suggesting that CDK4 may be a rational therapeutic target for metastatic melanoma.

Collaboration


Dive into the Naomi Walsh's collaboration.

Top Co-Authors

Avatar

John Crown

Dublin City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Gullo

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Kennedy

Royal Victoria Eye and Ear Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex J. Eustace

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge