Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoto Kawakami is active.

Publication


Featured researches published by Naoto Kawakami.


Proceedings of the National Academy of Sciences of the United States of America | 2007

CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis

Ayako Miya; Premkumar Albert; Tomonori Shinya; Yoshitake Desaki; Kazuya Ichimura; Ken Shirasu; Yoshihiro Narusaka; Naoto Kawakami; Hanae Kaku; Naoto Shibuya

Chitin is a major component of fungal cell walls and serves as a microbe-associated molecular pattern (MAMP) for the detection of various potential pathogens in innate immune systems of both plants and animals. We recently showed that chitin elicitor-binding protein (CEBiP), plasma membrane glycoprotein with LysM motifs, functions as a cell surface receptor for chitin elicitor in rice. The predicted structure of CEBiP does not contain any intracellular domains, suggesting that an additional component(s) is required for signaling through the plasma membrane into the cytoplasm. Here, we identified a receptor-like kinase, designated CERK1, which is essential for chitin elicitor signaling in Arabidopsis. The KO mutants for CERK1 completely lost the ability to respond to the chitin elicitor, including MAPK activation, reactive oxygen species generation, and gene expression. Disease resistance of the KO mutant against an incompatible fungus, Alternaria brassicicola, was partly impaired. Complementation with the WT CERK1 gene showed cerk1 mutations were responsible for the mutant phenotypes. CERK1 is a plasma membrane protein containing three LysM motifs in the extracellular domain and an intracellular Ser/Thr kinase domain with autophosphorylation/myelin basic protein kinase activity, suggesting that CERK1 plays a critical role in fungal MAMP perception in plants.


Plant Physiology | 2008

High Temperature-Induced Abscisic Acid Biosynthesis and Its Role in the Inhibition of Gibberellin Action in Arabidopsis Seeds

Shigeo Toh; Akane Imamura; Asuka Watanabe; Kazumi Nakabayashi; Masanori Okamoto; Yusuke Jikumaru; Atsushi Hanada; Yukie Aso; Kanako Ishiyama; Noriko Tamura; Satoshi Iuchi; Masatomo Kobayashi; Shinjiro Yamaguchi; Yuji Kamiya; Eiji Nambara; Naoto Kawakami

Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) are altered at high temperature. Here, we show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2, NCED5, and NCED9. Reverse-genetic studies show that NCED9 plays a major and NCED5 and NCED2 play relatively minor roles in high temperature-induced ABA synthesis and germination inhibition. We also show that bioactive GAs stay at low levels at high temperature, presumably through suppression of GA 20-oxidase genes, GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes, GA3ox1 and GA3ox2. Thermoinhibition-tolerant germination of loss-of-function mutants of GA negative regulators, SPINDLY (SPY) and RGL2, suggests that repression of GA signaling is required for thermoinibition. Interestingly, ABA-deficient aba2-2 mutant seeds show significant expression of GA synthesis genes and repression of SPY expression even at high temperature. In addition, the thermoinhibition-resistant germination phenotype of aba2-1 seeds is suppressed by a GA biosynthesis inhibitor, paclobutrazol. We conclude that high temperature stimulates ABA synthesis and represses GA synthesis and signaling through the action of ABA in Arabidopsis seeds.


Plant and Cell Physiology | 2012

Thermoinhibition Uncovers a Role for Strigolactones in Arabidopsis Seed Germination

Shigeo Toh; Yuji Kamiya; Naoto Kawakami; Eiji Nambara; Peter McCourt; Yuichiro Tsuchiya

Strigolactones are host factors that stimulate seed germination of parasitic plant species such as Striga and Orobanche. This hormone is also important in shoot branching architecture and photomorphogenic development. Strigolactone biosynthetic and signaling mutants in model systems, unlike parasitic plants, only show seed germination phenotypes under limited growth condition. To understand the roles of strigolactones in seed germination, it is necessary to develop a tractable experimental system using model plants such as Arabidopsis. Here, we report that thermoinhibition, which involves exposing seeds to high temperatures, uncovers a clear role for strigolactones in promoting Arabidopsis seed germination. Both strigolactone biosynthetic and signaling mutants showed increased sensitivity to seed thermoinhibition. The synthetic strigolactone GR24 rescued germination of thermoinbibited biosynthetic mutant seeds but not a signaling mutant. Hormone analysis revealed that strigolactones alleviate thermoinhibition by modulating levels of the two plant hormones, GA and ABA. We also showed that GR24 was able to counteract secondary dormancy in Arabidopsis ecotype Columbia (Col) and Cape Verde island (Cvi). Systematic hormone analysis of germinating Striga helmonthica seeds suggested a common mechanism between the parasitic and non-parasitic seeds with respect to how hormones regulate germination. Thus, our simple assay system using Arabidopsis thermoinhibition allows comparisons to determine similarities and differences between parasitic plants and model experimental systems for the use of strigolactones.


The Plant Cell | 2013

ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs Interact to Activate the Expression of SOMNUS and Other High-Temperature-Inducible Genes in Imbibed Seeds in Arabidopsis

Soohwan Lim; Jeongmoo Park; Nayoung Lee; Jinkil Jeong; Shigeo Toh; Asuka Watanabe; Jung Hyun Kim; Hyojin Kang; Dong Hwan Kim; Naoto Kawakami; Giltsu Choi

The Arabidopsis aba2, abi3, della pentuple, and som mutant seeds germinate even at high temperature. This work shows that ABI3, ABI5, and DELLA target to the SOM promoter and mediate high-temperature signaling to activate the expression of SOM in imbibed seeds. Seeds monitor the environment to germinate at the proper time, but different species respond differently to environmental conditions, particularly light and temperature. In Arabidopsis thaliana, light promotes germination but high temperature suppresses germination. We previously reported that light promotes germination by repressing SOMNUS (SOM). Here, we examined whether high temperature also regulates germination through SOM and found that high temperature activates SOM expression. Consistent with this, som mutants germinated more frequently than the wild type at high temperature. The induction of SOM mRNA at high temperature required abscisic acid (ABA) and gibberellic acid biosynthesis, and ABA-INSENSITIVE3 (ABI3), ABI5, and DELLAs positively regulated SOM expression. Chromatin immunoprecipitation assays indicated that ABI3, ABI5, and DELLAs all target the SOM promoter. At the protein level, ABI3, ABI5, and DELLAs all interact with each other, suggesting that they form a complex on the SOM promoter to activate SOM expression at high temperature. We found that high-temperature-inducible genes frequently have RY motifs and ABA-responsive elements in their promoters, some of which are targeted by ABI3, ABI5, and DELLAs in vivo. Taken together, our data indicate that ABI3, ABI5, and DELLAs mediate high-temperature signaling to activate the expression of SOM and other high-temperature-inducible genes, thereby inhibiting seed germination.


Molecular Genetics and Genomics | 2006

Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat

Keiichi Mochida; Kanako Kawaura; Etsuo Shimosaka; Naoto Kawakami; Tadasu Shin-I; Yuji Kohara; Yukiko Yamazaki; Yasunari Ogihara

In order to assess global changes in gene expression patterns in stress-induced tissues, we conducted large-scale analysis of expressed sequence tags (ESTs) in common wheat. Twenty-one cDNA libraries derived from stress-induced tissues, such as callus, as well as liquid cultures and abiotic stress conditions (temperature treatment, desiccation, photoperiod, moisture and ABA) were constructed. Several thousand colonies were randomly selected from each of these 21 cDNA libraries and sequenced from both the 5′ and 3′ ends. By computing abundantly expressed ESTs, correlated expression patterns of genes across the tissues were monitored. Furthermore, the relationships between gene expression profiles among the stress-induced tissues were inferred from the gene expression patterns. Multi-dimensional analysis of EST data is analogous to microarray experiments. As an example, genes specifically induced and/or suppressed by cold acclimation and heat-shock treatments were selected in silico. Four hundred and ninety genes showing fivefold induction or 218 genes for suppression in comparison to the control expression level were selected. These selected genes were annotated with the BLAST search. Furthermore, gene ontology was conducted for these genes with the InterPro search. Because genes regulated in response to temperature treatment were successfully selected, this method can be applied to other stress-treated tissues. Then, the method was applied to screen genes in response to abiotic stresses such as drought and ABA treatments. In silico selection of screened genes from virtual display should provide a powerful tool for functional plant genomics.


Plant and Cell Physiology | 2012

Tissue-specific Transcriptome Analysis Reveals Cell Wall Metabolism, Flavonol Biosynthesis, and Defense Responses are Activated in the Endosperm of Germinating Arabidopsis thaliana Seeds

Akira Endo; Kiyoshi Tatematsu; Kousuke Hanada; Lisza Duermeyer; Masanori Okamoto; Keiko Yonekura-Sakakibara; Kazuki Saito; Tetsuro Toyoda; Naoto Kawakami; Yuji Kamiya; Motoaki Seki; Eiji Nambara

Seed germination is a result of the competition of embryonic growth potential and mechanical constraint by surrounding tissues such as the endosperm. To understand the processes occurring in the endosperm during germination, we analyzed tiling array expression data on dissected endosperm and embryo from 6 and 24 h-imbibed Arabidopsis seeds. The genes preferentially expressed in the endosperm of both 6 and 24 h-imbibed seeds were enriched for those related to cell wall biosynthesis/modifications, flavonol biosynthesis, defense responses and cellular transport. Loss of function of AtXTH31/XTR8, an endosperm-specific gene for a putative xyloglucan endotransglycosylase/hydrolase, led to faster germination. This suggests that AtXTH31/XTR8 is involved in the reinforcement of the cell wall of the endosperm during germination. In vivo flavonol staining by diphenyl boric acid aminoethyl ester (DPBA) showed flavonols accumulated in the endosperm of both dormant and non-dormant seeds, suggesting that this event is independent of germination. Notably, DPBA fluorescence was also intense in the embryo, but the fluorescent region was diminished around the radicle and lower half of the hypocotyl during germination. DPBA fluorescence was localized in the vacuoles during germination. Vacuolation was not seen in imbibed dormant seeds, suggesting that vacuolation is associated with germination. A gene for δVPE (vacuolar processing enzyme), a caspase-1-like cysteine proteinase involved in cell death, is expressed specifically in endosperms of 24 h-imbibed seeds. The δvpe mutant showed retardation of vacuolation, but this mutation did not affect the kinetics of germination. This suggests that vacuolation is a consequence, and not a trigger, of germination.


Plant Growth Regulation | 2000

Accumulation and leakage of abscisic acid during embryo development and seed dormancy in wheat

Takako Suzuki; Takakazu Matsuura; Naoto Kawakami; Kazuhiko Noda

Seed dormancy develops latein embryogenesis after a period of potential prematuregermination and has been associated with levels ofabscisic acid (ABA) in, and sensitivity to, ABA ofembryos. In wheat (Triticum aestivum L.)embryos, there are two peaks in levels of ABA duringdevelopment: the first occurs 25 days afterpollination (DAP) and the second from 35 to 40 DAP. The first peak of ABA appears to be associated withthe development of the embryos sensitivity to ABAsince such sensitivity was altered in seeds on earsthat were incubated in a solution of ABA from 15 and20 DAP. In the embryos of Kitakei wheat, a line thatexhibits dormancy, the second peak, at around 35 DAP,was more prolonged in comparison to Chihoku, anon-dormant line. The results support the proposedinvolvement of ABA in the formation and maintenance ofseed dormancy during middle and late embryogenesis. When developing embryos were incubated in water,embryonic ABA leaked out from the embryos, inparticular between 30 and 40 DAP. Prematuregermination observed between 30 and 40 DAP might berelated to such leakage of ABA from embryos.


Breeding Science | 2013

Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8′-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition

Makiko Chono; Hitoshi Matsunaka; Masako Seki; Masaya Fujita; Chikako Kiribuchi-Otobe; Shunsuke Oda; Hisayo Kojima; Daisuke Kobayashi; Naoto Kawakami

Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8′-hydroxyase gene which was highly expressed during seed development (TaABA8′OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8′OH1 on the D genome (TaABA8′OH1-D) was identified in Japanese cultivars including ‘Tamaizumi’. However, a single mutation in TaABA8′OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8′OH1 on the A genome (TaABA8′OH1-A), TM1833, was identified from gamma-ray irradiation lines of ‘Tamaizumi’. TM1833 (a double mutant in TaABA8′OH1-A and TaABA8′OH1-D) showed lower TaABA8′OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in ‘Tamaizumi’ (a single mutant in TaABA8′OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8′OH1 may be effective in germination inhibition in field-grown wheat.


Journal of Experimental Botany | 2016

α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana

Takuma Shigeyama; Asuka Watanabe; Konatsu Tokuchi; Shigeo Toh; Naoki Sakurai; Naoto Shibuya; Naoto Kawakami

Highlight Xyloglucan oligosaccharide metabolism by α-xylosidase impacts xyloglucan remodelling, the mechanical integrity of the primary cell wall of growing tissues, cell expansion, and seed germination.


Plant Science | 1998

Cloning of cDNAs specifically expressed in wheat spikelets at the heading stage, as identified by the simple differential display method

Yasunari Ogihara; Yayoi Aizawa; Naoto Kawakami; Koji Murai

Abstract Wheat cDNAs expressed in the spikelets at the heading stage were isolated according to the PCR-mediated simple differential display method. The wheat spikelets at the heading stage contain a pair of glumes, a lemma, a palea, a pair of lodicules, three stamens and a pistil. Anthers harbor bi-, and tri-nucleate pollen cells. Out of 76 RAPD primers examined, 13 primers gave 29 spikelet-specific bands. After cloning of these bands, 34 independent cDNAs were recovered by the DNA sequencing of these clones. A homology search of these cDNAs showed the existence of genes homologous to meristem identity genes such as LEAFY and APETALA1 in Arabidopsis as well as other flower organ specific genes encoding UFO , pollen-, anther-, inflorescence-, and immature flower-specific proteins. Additionally, novel genes in the plants were obtained. Northern blot analysis of these clones revealed that rare as well as abundant mRNAs were also clonable, and 14 cDNAs were specifically or highly expressed in the flower organs rather than in the other tissues including young spikes. Fourteen cDNAs were classified into six groups, based on the hybridization patterns. Furthermore, the six groups were divided into two major groups: (1) cDNAs specifically expressed in certain tissues of the wheat flower (lodicule, stamen, pistil and lemma/palea-pistil), and (2) cDNAs continuously transcribed in the flower organs. These genes might play roles in gamete formation and/or maintain the activity of flower organs at the heading stage.

Collaboration


Dive into the Naoto Kawakami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge