Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoya Kanazawa is active.

Publication


Featured researches published by Naoya Kanazawa.


Nature | 2010

Real-space observation of a two-dimensional skyrmion crystal

X. Z. Yu; Y. Onose; Naoya Kanazawa; Jin-Hong Park; J. H. Han; Yoshio Matsui; Naoto Nagaosa; Yoshinori Tokura

Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin–electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T–B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe1−xCoxSi (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe0.5Co0.5Si using Lorentz transmission electron microscopy. With a magnetic field of 50–70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T–B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.


Nature Materials | 2011

Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe.

X. Z. Yu; Naoya Kanazawa; Y. Onose; Koji Kimoto; W. Z. Zhang; Shintaro Ishiwata; Yoshio Matsui; Yoshinori Tokura

The skyrmion, a vortex-like spin-swirling object, is anticipated to play a vital role in quantum magneto-transport processes such as the quantum Hall and topological Hall effects. The existence of the magnetic skyrmion crystal (SkX) state was recently verified experimentally for MnSi and Fe(0.5)Co(0.5)Si by means of small-angle neutron scattering and Lorentz transmission electron microscopy. However, to enable the application of such a SkX for spintronic function, materials problems such as a low crystallization temperature and low stability of SkX have to be overcome. Here we report the formation of SkX close to room temperature in thin-films of the helimagnet FeGe. In addition to the magnetic twin structure, we found a magnetic chirality inversion of the SkX across lattice twin boundaries. Furthermore, for thin crystal plates with thicknesses much smaller than the SkX lattice constant (as) the two-dimensional SkX is quite stable over a wide range of temperatures and magnetic fields, whereas for quasi-three-dimensional films with thicknesses over as the SkX is relatively unstable and observed only around the helical transition temperature. The room-temperature stable SkX state as promised by this study will pave a new path to designing quantum-effect devices based on the controllable skyrmion dynamics.


Nature Communications | 2012

Skyrmion flow near room temperature in an ultralow current density

Xiuzhen Yu; Naoya Kanazawa; Weizhu Zhang; Takuro Nagai; Toru Hara; Koji Kimoto; Yoshio Matsui; Y. Onose; Yoshinori Tokura

The manipulation of spin textures with electric currents is an important challenge in the field of spintronics. Many attempts have been made to electrically drive magnetic domain walls in ferromagnets, yet the necessary current density remains quite high (~10(7) A cm(-2)). A recent neutron study combining Hall effect measurements has shown that an ultralow current density of J~10(2) A cm(-2) can trigger the rotational and translational motion of the skyrmion lattice in MnSi, a helimagnet, within a narrow temperature range. Raising the temperature range in which skyrmions are stable and reducing the current required to drive them are therefore desirable objectives. Here we demonstrate near-room-temperature motion of skyrmions driven by electrical currents in a microdevice composed of the helimagnet FeGe, by using in-situ Lorentz transmission electron microscopy. The rotational and translational motions of skyrmion crystal begin under critical current densities far below 100 A cm(-2).


Nano Letters | 2012

Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples

Akira Tonomura; Xiuzhen Yu; Keiichi Yanagisawa; Tsuyoshi Matsuda; Y. Onose; Naoya Kanazawa; Hyun Soon Park; Yoshinori Tokura

Observing and characterizing the spin distributions on a nanometer scale are of vital importance for understanding nanomagnetism and its application to spintronics. The magnetic structure in MnSi thin samples prepared from a bulk, which undergoes a transition from a helix to a skyrmion lattice, was investigated by in situ observation using Lorentz microscopy. Stripe domains were observed at zero applied field below 22.5 K. A skyrmion lattice with 6-fold symmetry in real space appeared when a field of 0.18 T was applied normal to the film plane. The lattice constant was estimated to be 18 nm, almost identical to the helical period. In comparison with the marginally stable skyrmion phase in a bulk sample, the skyrmion phase was stable over a wide range of temperatures and magnetic fields in the thin samples.


Physical Review Letters | 2013

Robust formation of Skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi.

Yufan Li; Naoya Kanazawa; Xiuzhen Yu; Atsushi Tsukazaki; Masashi Kawasaki; Masakazu Ichikawa; Xiaofeng Jin; Fumitaka Kagawa; Yoshinori Tokura

Magnetotransport properties have been investigated for epitaxial thin films of B20-type MnSi grown on Si(111) substrates. Lorentz transmission electron microscopy images clearly point to the robust formation of Skyrmions over a wide temperature-magnetic field region. New features distinct from those reported previously for MnSi are observed for epitaxial films: a shorter (nearly half) period of the spin helix and Skyrmions, and a topological Hall effect anomaly consisting in ∼2.2 times enhancement of the amplitude and in the opposite sign with respect to bulk samples.


Nature Nanotechnology | 2013

Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling

Kenji Shibata; Xiuzhen Yu; Toru Hara; D. Morikawa; Naoya Kanazawa; Koji Kimoto; Shintaro Ishiwata; Yoshio Matsui; Yoshinori Tokura

K. Shibata, X. Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui and Y. Tokura 1 Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan, 2 RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan, 3 Surface Physics and Structure Unit, National Institute for Materials Science, Tsukuba 305-0044, Japan.Chirality--that is, left- or right-handedness--is an important concept in a broad range of scientific areas. In condensed matter, chirality is found not only in molecular or crystal forms, but also in magnetic structures. A magnetic skyrmion is a topologically stable spin vortex structure, as observed in chiral-lattice helimagnets, and is one example of such a structure. The spin swirling direction (skyrmion helicity) should be closely related to the underlying lattice chirality via the relativistic spin-orbit coupling. Here, we report on the correlation between skyrmion helicity and crystal chirality in alloys of helimagnets Mn(1-x)Fe(x)Ge with varying compositions by Lorentz transmission electron microscopy and convergent-beam electron diffraction over a broad range of compositions (x = 0.3-1.0). The skyrmion lattice constant shows non-monotonous variation with composition x, with a divergent behaviour around x = 0.8, where the correlation between magnetic helicity and crystal chirality changes sign. This originates from continuous variation of the spin-orbit coupling strength and its sign reversal in the metallic alloys as a function of x. Controllable spin-orbit coupling may offer a promising way to tune skyrmion size and helicity.


Nature Materials | 2014

Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect

Masahito Mochizuki; Xiuzhen Yu; S. Seki; Naoya Kanazawa; Wataru Koshibae; Jiadong Zang; Maxim Mostovoy; Y. Tokura; Naoto Nagaosa

Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion--a particle-like object in which spins point in all directions to wrap a sphere--constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micrometre-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi exhibit a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.


Nature Nanotechnology | 2014

Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography

Hyun Soon Park; Xiuzhen Yu; Shinji Aizawa; Toshiaki Tanigaki; Tetsuya Akashi; Yoshio Takahashi; Tsuyoshi Matsuda; Naoya Kanazawa; Y. Onose; Daisuke Shindo; Akira Tonomura; Yoshinori Tokura

Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.


Nature Nanotechnology | 2015

Large anisotropic deformation of skyrmions in strained crystal

K. Shibata; Junichi Iwasaki; Naoya Kanazawa; Shinji Aizawa; Toshiaki Tanigaki; Manabu Shirai; Taro Nakajima; Masashi Kubota; Masashi Kawasaki; Hyun Soon Park; Daisuke Shindo; Naoto Nagaosa; Yoshinori Tokura

Mechanical control of magnetism is an important and promising approach in spintronics. To date, strain control has mostly been demonstrated in ferromagnetic structures by exploiting a change in magnetocrystalline anisotropy. It would be desirable to achieve large strain effects on magnetic nanostructures. Here, using in situ Lorentz transmission electron microscopy, we demonstrate that anisotropic strain as small as 0.3% in a chiral magnet of FeGe induces very large deformations in magnetic skyrmions, as well as distortions of the skyrmion crystal lattice on the order of 20%. Skyrmions are stabilized by the Dzyaloshinskii-Moriya interaction, originating from a chiral crystal structure. Our results show that the change in the modulation of the strength of this interaction is amplified by two orders of magnitude with respect to changes in the crystal lattice due to an applied strain. Our findings may provide a mechanism to achieve strain control of topological magnetic structures based on the Dzyaloshinskii-Moriya interaction.


Physical Review B | 2015

Discretized topological Hall effect emerging from skyrmions in constricted geometry

Naoya Kanazawa; Masashi Kubota; Atsushi Tsukazaki; Y. Kozuka; K. S. Takahashi; Masashi Kawasaki; Masakazu Ichikawa; Fumitaka Kagawa; Yoshinori Tokura

We investigate the skyrmion formation process in nano-structured FeGe Hall-bar devices by measurements of topological Hall effect, which extracts the winding number of a spin texture as an emergent magnetic field. Step-wise profiles of topological Hall resistivity are observed in the course of varying the applied magnetic field, which arise from instantaneous changes in the magnetic nano-structure such as creation, annihilation, and jittering motion of skyrmions. The discrete changes in topological Hall resistivity demonstrate the quantized nature of emergent magnetic flux inherent in each skyrmion, which had been indistinguishable in many-skyrmion systems on a macroscopic scale.

Collaboration


Dive into the Naoya Kanazawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiuzhen Yu

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge