Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoya Kawashima is active.

Publication


Featured researches published by Naoya Kawashima.


European Journal of Neuroscience | 1998

Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice

Kei Watase; Kouichi Hashimoto; Masanobu Kano; Keiko Yamada; Masahiko Watanabe; Yoshiro Inoue; Shigeru Okuyama; Takashi Sakagawa; Shin-ichi Ogawa; Naoya Kawashima; Seiji Hori; Misato Takimoto; Keiji Wada; Kohichi Tanaka

To study the function of GLAST, a glutamate transporter highly expressed in the cerebellar Bergmann astrocytes, the mouse GLAST gene was inactivated. GLAST‐deficient mice developed normally and could manage simple coordinated tasks, such as staying on a stationary or a slowly rotating rod, but failed more challenging task such as staying on a quickly rotating rod. Electrophysiological examination revealed that Purkinje cells in the mutant mice remained to be multiply innervated by climbing fibres even at the adult stage. We also found that oedema volumes in the mutant mice increased significantly after cerebellar injury. These results indicate that GLAST plays active roles both in the cerebellar climbing fibre synapse formation and in preventing excitotoxic cerebellar damage after acute brain injury.


Neuropharmacology | 2004

MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity.

Shigeyuki Chaki; Ryoko Yoshikawa; Shiho Hirota; Toshiharu Shimazaki; Maoko Maeda; Naoya Kawashima; Takao Yoshimizu; Akito Yasuhara; Kazunari Sakagami; Shigeru Okuyama; Shigetada Nakanishi; Atsuro Nakazato

The present study describes the pharmacological profile of (1R,2R,3R,5R,6R)-2-Amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039), a novel group II mGluR antagonist. MGS0039 showed high affinity for both mGluR2 (Ki = 2.2 nM) and mGluR3 (Ki = 4.5 nM), which are comparable to LY341495, another group II mGluR antagonist. MGS0039 attenuated both glutamate-induced inhibition of forskolin-evoked cyclic AMP formation in CHO cells expressing mGluR2 (IC50 = 20 nM) or mGluR3 (IC50 = 24 nM) and glutamate-increased [35S]GTPgammaS binding to mGluR2 (pA2 = 8.2), which means that MGS0039 acts as an antagonist. MGS0039 shifted the dose-response curve of glutamate-increased [35S]GTPgammaS binding rightward without altering the maximal response, and thereby indicating competitive antagonism. MGS0039 showed no significant effects on other mGluRs as well as the other receptors and transporters we studied. MGS0039 (0.3-3 mg/kg, i.p.) as well as LY341495 (0.1-3 mg/kg, i.p.) had dose-dependent antidepressant-like effects in the rat forced swim test and in the mouse tail suspension test. In contrast, MGS0039 (0.3-3 mg/kg, i.p.) had no apparent effect in the rat social interaction test and in the rat elevated plus-maze. These results indicate that MGS0039 is a potent and selective antagonist of group II mGluR, and that group II mGluR antagonists, like MGS0039, have an antidepressant-like potential in experimental animal models.


Brain Research | 2005

AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist

Jun-ichi Karasawa; Toshiharu Shimazaki; Naoya Kawashima; Shigeyuki Chaki

(1R,2R,3R,5R,6R)-2-amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039), a selective group II metabotropic glutamate receptor (mGluR) antagonist, exhibits antidepressant-like activities in rodent models. In the present studies, to clarify the involvement of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation in exhibition of the antidepressant-like properties of MGS0039, we examined the effect of an AMPA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), on the antidepressant-like effect of MGS0039 in the mouse tail suspension test. We also examined the effects of NBQX on increased serotonin release after treatment with MGS0039 in the rat medial prefrontal cortex (mPFC) using in vivo microdialysis evaluation. In the tail suspension test, MGS0039 (0.3-3 mg/kg, i.p.) treatment dose-dependently and significantly reduced immobility time. Pretreatment with NBQX (10 mg/kg, s.c.) significantly prevented the antidepressant-like effect of MGS0039 in the tail suspension test, while NBQX itself had no effect on immobility time. In the microdialysis evaluation, administration of MGS0039 (10 mg/kg, i.p.) significantly increased serotonin levels in mPFC in freely moving rats, while NBQX (1 mg/kg, i.p.) itself had no effect on serotonin release in this region. Pretreatment with NBQX significantly attenuated the increase in serotonin release by MGS0039. These findings suggest that stimulation of postsynaptic AMPA receptors plays a role in mediating the pharmacological effects of MGS0039.


European Journal of Pharmacology | 2003

Cocaine- and amphetamine-regulated transcript peptide produces anxiety-like behavior in rodents.

Shigeyuki Chaki; Naoya Kawashima; Yoshiko Suzuki; Toshiharu Shimazaki; Shigeru Okuyama

Cocaine- and amphetamine-regulated transcript (CART) peptide (CART-(55-102)) is involved in the suppression of food intake. We now report that CART-(55-102) is involved in anxiety in rodents. Intracerebroventricularly administered CART-(55-102) as well as intraperitoneal administration of N-methyl-beta-carboline-3-carboxamide (FG-7142), a selective GABA(A)/benzodiazepine receptor inverse agonist, reduced time spent in the open arms in the elevated plus-maze task in mice. CART-(55-102)-induced anxiogenic-like behavior in this task was attenuated by widely prescribed anxiolytics such as diazepam and buspirone. Likewise, CART-(55-102) and FG-7142 significantly reduced social interaction in mice. Both diazepam and buspirone significantly reversed CART-(55-102)-induced anxiogenic-like behavior in social interaction tests. By contrast, another biologically active CART peptide, CART-(62-102), was without effect in the elevated plus-maze task in mice. Moreover, intracerebroventricular administration of CART-(55-102) markedly increased the firing rate of locus coeruleus neurons in single unit recording in anesthetized rats. As CART-(55-102) produced anxiety-like effects in rodents, this peptide may possibly be involved in anxiety and stress-related behavior.


Neuroscience Letters | 2005

Neuropharmacological profiles of antagonists of group II metabotropic glutamate receptors

Naoya Kawashima; Jun-ichi Karasawa; Toshiharu Shimazaki; Shigeyuki Chaki; Shigeru Okuyama; Akito Yasuhara; Atsuro Nakazato

Glutamatergic abnormalities play roles in several psychiatric disorders. Glutamate acts at two classes of receptors, ionotropic and metabotropic glutamate receptors (mGluR), the latter is classified into three group, based on receptor homology and signaling mechanisms. Among them, recent pharmacological and histochemical studies suggest that the group II mGluR (mGluR2 and mGluR3) plays crucial roles in the control of emotional states. We previously reported that MGS0039, a selective group II mGluR antagonist, exhibited dose-dependent antidepressant-like effects in some animal models. However, the mechanism by which group II mGluR antagonists exhibit such effects is still unclear. In the present two studies, we examined neuropharmacological effects of group II mGluR antagonists on monoaminergic neurons. In an electrophysiological study, MGS0039 dose-dependently and significantly increased the firing rate of dorsal raphe nucleus (DRN) serotonergic neurons. LY341495, another group II mGluR antagonist, also increased DRN serotonergic neural activity significantly. Consistent with the findings of this electrophysiological study, MGS0039 significantly increased extracellular level of serotonin in rat medial prefrontal cortex in a microdialysis study. In contrast, MGS0039 had no effect on the activity of locus coeruleus noradrenergic neurons. These findings suggest that modulation of serotonergic neuron might be, at least in part, responsible for the antidepressant-like effects of group II mGluR antagonists.


British Journal of Pharmacology | 1997

The atypical antipsychotic profile of NRA0045, a novel dopamine D4 and 5-hydroxytryptamine2A receptor antagonist, in rats

Shigeru Okuyama; Shigeyuki Chaki; Naoya Kawashima; Yoshiko Suzuki; Shin-ichi Ogawa; Toshihito Kumagai; Atsuro Nakazato; Masashi Nagamine; Kazumasa Yamaguchi; Kazuyuki Tomisawa

The atypical antipsychotic profile of (R)‐(+)‐2‐amino‐4‐(4‐fluorophenyl)‐5‐[1‐[4‐(4‐fluorophenyl)‐4‐oxobutyl] pyrrolidin‐3‐yl] thiazole (NRA0045), a potent dopamine D4 and 5‐hydroxytryptamine (5‐HT)2A receptor antagonist, was examined in rats. Spontaneous locomotor activity was decreased dose‐dependently with i.p. administration of clozapine (ED50 3.7 mg kg−1), haloperidol (ED50 0.1 mg kg−1) and chlorpromazine (ED50 0.9 mg kg−1), whereas inhibition of this type of behaviour induced by i.p. administration of NRA0045, at doses up to 10 mg kg−1, did not exceed 50%. Locomotor hyperactivity induced by methamphetamine (MAP, 2 mg kg−1, i.p.) in rats (a model of antipsychotic activity) was dose‐dependently antagonized by NRA0045 (ED50 0.4 mg kg−1, i.p., and 0.3 mg kg−1, p.o., respectively), clozapine (ED50 0.3 mg kg−1, i.p. and 0.8 mg kg−1, p.o., respectively), haloperidol (ED50 0.02 mg kg−1, i.p. and 0.1 mg kg−1, p.o., respectively), chlorpromazine (ED50 0.3 mg kg−1, i.p. and 3.3 mg kg−1, p.o., respectively). In contrast, the MAP (3 mg kg−1, i.v.)‐induced stereotyped behaviour in rats (a model of extrapyramidal symptoms) was not affected by NRA0045 or clozapine, at the highest dose given (30 mg kg−1, i.p.). Haloperidol (ED50 0.3 mg kg−1, i.p.) and chlorpromazine (ED50 4.8 mg kg−1, i.p.) strongly blocked the MAP‐induced stereotyped behaviour. NRA0045 and clozapine selectively blocked behaviour associated with activation of the mesolimbic/mesocortical dopamine neurones rather than nigrostriatal dopamine neurones. Extracellular single‐unit recording studies demonstrated that MAP (1 mg kg−1, i.v.) decreased the firing rate in the substantia nigra (A9) and ventral tegmental area (A10) dopamine neurones in anaesthetized rats. NRA0045 completely reversed the inhibitory effects of MAP on A10 dopamine neurones (ED50 0.1 mg kg−1, i.v.), whereas the inhibitory effects of MAP on A9 dopamine neurones were not affected by NRA0045, in doses up to 1 mg kg−1 (i.v.). Clozapine completely reversed the inhibitory effects of MAP on A10 dopamine neurones (ED50 1.9 mg kg−1, i.v.) and on A9 dopamine neurones (ED50 2.5 mg kg−1, i.v.). Haloperidol completely reversed the inhibitory effects of MAP on A10 (ED50 0.03 mg kg−1, i.v.) and on A9 dopamine neurones (0.02 mg kg−1, i.v.). NRA0045, like clozapine, was more potent in reversing the effects of MAP on A10 than A9 dopamine neurones. Prepulse inhibition (PPI) is impaired markedly in humans with schizophrenia. The disruption of PPI in rats by apomorphine (0.5 mg kg−1, s.c.) was reversed significantly by NRA0045 (3 mg kg−1, i.p.), clozapine (3 mg kg−1, i.p.) and haloperidol (0.3 mg kg−1, i.p.). Phencyclidine (PCP) elicits predominantly psychotic symptoms in normal humans and in schizophrenics. NRA0045 (0.03–0.3 mg kg−1, i.p.) and clozapine (0.1–1 mg kg−1, i.p.) significantly and dose‐dependently shortened the PCP(1.25 mg kg−1, i.p.)‐induced prolonged swimming latency in rats in a water maze task, whereas haloperidol (0.01–0.1 mg kg−1, i.p.) did not significantly alter swimming latency. These findings suggest that NRA0045 may have unique antipsychotic activities without the liability of motor side effects typical of classical antipsychotics.


Life Sciences | 2000

Pain threshold, learning and formation of brain edema in mice lacking the angiotensin II type 2 receptor

Takashi Sakagawa; Shigeru Okuyama; Naoya Kawashima; Soichi Hozumi; Osamu Nakagawasai; Takeshi Tadano; Kensuke Kisara; Toshihiro Ichiki; Tadashi Inagami

The main biological role of angiotensin II type 2 receptor (AT2) has not been established. We made use of targeted disruption of the mouse AT2 gene to examine the functional role of the AT2 receptor in the central nervous system (CNS). We have previously shown that AT2-deficient mice displayed anxiety-like behavior in comparisons with wild-type mice. In the present study, we analyzed the pain threshold, learning behavior and brain edema formation using the tail-flick test, the tail-pinch test, the passive avoidance task and cold injury, respectively. In the passive avoidance task and cold injury, no differences were found between wild-type mice and AT2-deficient mice. In contrast, the pain threshold was significantly lower in AT2-deficient mice, compared with findings in wild-type mice. The immunohistochemical distribution of beta-endorphin in the brain was analyzed quantitatively in AT2-deficient mice and wild-type mice, using microphotometry. The fluorescence intensity of beta-endorphin in the arcuate nucleus of the medial basal hypothalamus (ARC) was significantly lower in AT2-deficient mice, compared with findings in wild-type mice. We found that the AT2 receptor does not influence learning behavior and brain edema formation. As AT2-deficient mice have increased sensitivity to pain and decreased levels of brain beta-endorphin, AT2 receptors may perhaps mediate regulation of the pain threshold.


Life Sciences | 1999

A selective dopamine D4 receptor antagonist, NRA0160: a preclinical neuropharmacological profile.

Shigeru Okuyama; Naoya Kawashima; Shigeyuki Chaki; Ryoko Yoshikawa; Takeo Funakoshi; Shin-ichi Ogawa; Yoshiko Suzuki; Yoko Ikeda; Toshihito Kumagai; Atsuro Nakazato; Masashi Nagamine; Kazuyuki Tomisawa

NRA0160, 5 - [2- ( 4- ( 3 - fluorobenzylidene) piperidin-1-yl) ethyl] - 4 -(4-fluorophenyl) thiazole-2-carboxamide, has a high affinity for human cloned dopamine D4.2, D4.4 and D4.7 receptors, with Ki values of 0.5, 0.9 and 2.7 nM, respectively. NRA0160 is over 20,000fold more potent at the dopamine D4.2 receptor compared with the human cloned dopamine D2L receptor. NRA0160 has negligible affinity for the human cloned dopamine D3 receptor (Ki=39 nM), rat serotonin (5-HT)2A receptors (Ki=180 nM) and rat alpha1 adrenoceptor (Ki=237 nM). NRA0160 and clozapine antagonized locomotor hyperactivity induced by methamphetamine (MAP) in mice. NRA0160 and clozapine antagonized MAP-induced stereotyped behavior in mice, although their effects did not exceed 50% inhibition, even at the highest dose given. NRA0160 and clozapine significantly induced catalepsy in rats, although their effects did not exceed 50% induction even at the highest dose given. NRA0160 and clozapine significantly reversed the disruption of prepulse inhibition (PPI) in rats produced by apomorphine. NRA0160 and clozapine significantly shortened the phencyclidine (PCP)-induced prolonged swimming latency in rats in a water maze task. These findings suggest that NRA0160 may have unique antipsychotic activities without the liability of motor side effects typical of classical antipsychotics.


Life Sciences | 2001

Involvement of corticotropin-releasing factor subtype 1 receptor in the acquisition phase of learned helplessness in rats.

Kazuaki Takamori; Naoya Kawashima; Shigeyuki Chaki; Aturo Nakazato; Kazuya Kameo

To determine if CRF receptor subtype 1 (CRF1) is involved in the acquisition phase of LH, we administered CRF receptor antagonists, CRA 1000 and CP-154,526, 60 min before (acquisition phase) or immediately after (consolidation phase) inescapable shocks on day 1, and 60 min before (retention phase) escape test on day 2. CRA1000 (10 mg/kg. p.o.) and CP-154,526 (30 mg/kg, p.o.) decreased the number of escape failures in the acquisition phase, but not in consolidation and retention phases. The tricyclic antidepressant, imipramine did not affect the number of escape failures in all 3 phases. Thus, the CRF1 receptor is apparently involved in the resultant escape failures in the acquisition phase of LH in rats.


Annals of the New York Academy of Sciences | 2000

Activation of an Effector Immediate‐early Gene arc by Methampetamine

Kanato Yamagata; Kyoko Suzuki; Hiroko Sugiura; Naoya Kawashima; Shigeru Okuyama

As immediate‐early genes (IEGs) are thought to play a critical role in mediating stimulus‐induced neural plasticity, IEG response induced by methamphetamine (METH) has been characterized to define the changes in gene expression that may underlie its long‐lasting behavioral effects. Although activation of several transcription factor IEGs has been described, little is known about effector IEGs. Here, we have examined whether METH administration affects expression of an effector IEG arc (activity‐regulated, cytoskeleton‐associated) that encodes a protein with homology to spectrin. Using in situ hybridization, we observed that METH caused a rapid and transient dose‐dependent increase in arc mRNA level in the striatum and cortex that was abolished by pretreatment with the specific dopamine D1 receptor antagonist SCH‐23390 but not by an atypical neuroleptic clozapine. METH induced arc mRNA in layers IV and VI of the cortex which dopamine receptor are localized to. These results suggest that D1 receptors are coupled to activation of arc gene, which may be involved in functional or structural alterations underlying neural plasticity triggered by METH.

Collaboration


Dive into the Naoya Kawashima's collaboration.

Top Co-Authors

Avatar

Shigeru Okuyama

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Shigeyuki Chaki

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Atsuro Nakazato

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin-ichi Ogawa

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Yoshiko Suzuki

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuya Kameo

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Takeo Funakoshi

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Ryoko Yoshikawa

Taisho Pharmaceutical Co.

View shared research outputs
Researchain Logo
Decentralizing Knowledge