Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naoyuki Chosa is active.

Publication


Featured researches published by Naoyuki Chosa.


Scientific Reports | 2015

Novel SCRG1/BST1 axis regulates self-renewal, migration, and osteogenic differentiation potential in mesenchymal stem cells

Emiko Aomatsu; Noriko Takahashi; Shunsuke Sawada; Naoto Okubo; Tomokazu Hasegawa; Masayuki Taira; Hiroyuki Miura; Akira Ishisaki; Naoyuki Chosa

Human mesenchymal stem cells (hMSCs) remodel or regenerate various tissues through several mechanisms. Here, we identified the hMSC-secreted protein SCRG1 and its receptor BST1 as a positive regulator of self-renewal, migration, and osteogenic differentiation. SCRG1 and BST1 gene expression decreased during osteogenic differentiation of hMSCs. Intriguingly, SCRG1 maintained stem cell marker expression (Oct-4 and CD271/LNGFR) and the potentials of self-renewal, migration, and osteogenic differentiation, even at high passage numbers. Thus, the novel SCRG1/BST1 axis determines the fate of hMSCs by regulating their kinetic and differentiation potentials. Our findings provide a new perspective on methods for ex vivo expansion of hMSCs that maintain native stem cell potentials for bone-forming cell therapy.


Cellular Physiology and Biochemistry | 2013

EGF positively regulates the proliferation and migration, and negatively regulates the myofibroblast differentiation of periodontal ligament-derived endothelial progenitor cells through MEK/ERK- and JNK-dependent signals.

Hitomichi Kimura; Naoto Okubo; Naoyuki Chosa; Seiko Kyakumoto; Masaharu Kamo; Hiroyuki Miura; Akira Ishisaki

Background/Aims: Remodeling of fibrous and vascular tissues in the periodontal ligament (PDL) around the tooth root was observed during tooth movement by orthodontic force application. We previously demonstrated that a single cell-derived culture (SCDC) of primarily cultured PDL fibroblasts, called SCDC2, has an endothelial progenitor cell (EPC)-like character and can form endothelial cell (EC) marker-positive blood vessel-like structures. However, the types of molecular mechanisms that control the in vivo kinetic properties and the differentiation of the PDL-derived EPC-like cells into myofibroblasts (MFs), which are known to expand fibrous tissues, require clarification. Methods: Using specific mitogen activated protein kinase (MAPK) inhibitors, we examined how epidermal growth factor (EGF)-mediated MAPK signals affected the proliferation, migration, and MF differentiation of these cells. Results: EGF induced SCDC2 cell proliferation in MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)- and c-Jun N-terminal kinase (JNK)-dependent manners. In addition, EGF suppressed the expression of MF differentiation markers in these cells in a MEK/ERK-dependent manner, and, moreover, stimulated the cell migration in a MEK/ERK-dependent manner. Conclusion: EGF regulates fibrous tissue remodeling in PDLs through MEK/ERK- and JNK-mediated signals by affecting the proliferation, migration, and MF differentiation of the PDL-derived EPC-like cells.


Journal of Biochemistry | 2013

Transforming growth factor-β1 induces epithelial-mesenchymal transition and integrin α3β1-mediated cell migration of HSC-4 human squamous cell carcinoma cells through Slug.

Daishi Saito; Seiko Kyakumoto; Naoyuki Chosa; Miho Ibi; Noriko Takahashi; Naoto Okubo; Shunsuke Sawada; Akira Ishisaki; Masaharu Kamo

We investigated whether transforming growth factor (TGF)-β1 promoted epithelial-mesenchymal transition (EMT) and migration of human oral squamous cell carcinoma (hOSCC) cells. Among 6 hOSCC cell lines investigated, Smad2 phosphorylation and TGF-β target genes expression were most clearly upregulated following TGF-β1 stimulation in HSC-4 cells, indicating that HSC-4 cells were the most responsive to TGF-β1. In addition, the expression levels of the mesenchymal markers N-cadherin and vimentin were most clearly induced in HSC-4 cells among the hOSCC cell lines by TGF-β1 stimulation. Interestingly, E-cadherin and β-catenin at the cell surface were internalized in HSC-4 cells stimulated with TGF-β1. In addition, the expression levels of the EMT-related transcription factor Slug was significantly upregulated on TGF-β1 stimulation. Moreover, the downregulation of Slug by RNA interference clearly inhibited the TGF-β1-induced expression of mesenchymal marker and the migration of HSC-4 cells. Proteomics analysis also revealed that the expression levels of integrin α3β1-targeted proteins were upregulated in TGF-β1-stimulated HSC-4 cells. Neutral antibodies against integrin α3 and β1, as well as a focal adhesion kinase (FAK) inhibitor, clearly suppressed TGF-β1-induced cell migration. These results suggest that the EMT and integrin α3β1/FAK pathway-mediated migration of TGF-β1-stimulated HSC-4 hOSCC cells is positively controlled by Slug.


Journal of Biological Chemistry | 2011

Plasminogen/Plasmin Modulates Bone Metabolism by Regulating the Osteoblast and Osteoclast Function

Yosuke Kanno; Akira Ishisaki; Eri Kawashita; Naoyuki Chosa; Keiichi Nakajima; Tatsuji Nishihara; Kuniaki Toyoshima; Kiyotaka Okada; Shigeru Ueshima; Kenji Matsushita; Osamu Matsuo; Hiroyuki Matsuno

The contribution of plasminogen (Plg)/plasmin, which have claimed to be the main fibrinolytic regulators in the bone metabolism, remains unclear. This study evaluated how the absence of Plg affects the function of osteoblast (OB) and osteoclast (OC). There was a larger population of pre-OCs in bone marrow-derived cells from the Plg−/− mice than the population of that from the WT mice. In addition, the absence of Plg suppressed the expression of osteoprotegerin in OBs. Moreover, an exogenous plasmin clearly induced the osteoprotegerin expression in Plg−/− OBs. The osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells in co-culture with OBs from the Plg−/− mice was significantly accelerated in comparison with that in co-culture with OBs from the WT mice. Intriguingly, the accelerated OC differentiation of RAW264.7 cells co-cultured with Plg−/− OBs was clearly suppressed by the treatment of an exogenous plasmin. Consequently, Plg−/− mice display decreased bone mineral density. These findings could eventually lead to the development of new clinical therapies for bone disease caused by a disorder of the fibrinolytic system.


Cell Biology International | 2011

High-cell density-induced VCAM1 expression inhibits the migratory ability of mesenchymal stem cells

Soko Nishihira; Naoto Okubo; Noriko Takahashi; Akira Ishisaki; Yoshiki Sugiyama; Naoyuki Chosa

MSCs (mesenchymal stem cells) migrate into damaged tissue and then proliferate and differentiate into various cell lineages to regenerate bone, cartilage, fat and muscle. Cell—cell adhesion of MSCs is essential for the MSC‐dependent tissue regeneration after their homing into a damaged tissue. However, it remains to be elucidated what kinds of adhesion molecules play important roles in the cell—cell communication between MSCs. In order to identify adhesion molecules that facilitate mutual contact between MSCs, a comprehensive analysis of mRNA expression in adhesion molecules was performed by comparing profiles of expression status of adhesion molecules in MSCs at low‐ and high‐cell density. We found that the expression level of VCAM1 (vascular cell adhesion molecule‐1)/CD106 was clearly up‐regulated in the human bone marrow‐derived MSCs—UE7T‐13 cells – under a condition of high cell density. Intriguingly, the migratory ability of the cells was clearly accelerated by a knockdown of VCAM1. Furthermore, the migratory ability of UE7T‐13 cells was decreased by the over expression of exogenous VCAM1. In addition, the high cell density‐induced expression of VCAM1 was clearly suppressed by NF‐κB (nuclear factor‐κB) signalling‐related protein kinase inhibitors such as an IKK‐2 (IκB kinase‐2) inhibitor VI. In conclusion, the high cell density‐induced VCAM1 expression through the NF‐κB pathway inhibits the migratory ability of human bone marrow‐derived MSCs.


International Journal of Molecular Medicine | 2014

PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner

Jun Yokota; Naoyuki Chosa; Shunsuke Sawada; Naoto Okubo; Noriko Takahashi; Tomokazu Hasegawa; Hisatomo Kondo; Akira Ishisaki

Transforming growth factor-β (TGF-β) is a critical regulator of osteogenic differentiation and the platelet-derived growth factor (PDGF) is a chemoattractant or mitogen of osteogenic mesenchymal cells. However, the combined effects of these regulators on the osteogenic differentiation of mesenchymal cells remains unknown. In this study, we investigated the effects of TGF-β and/or PDGF on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). The TGF-β-induced osteogenic differentiation of UE7T-13 cells, a bone marrow-derived hMSC line, was markedly enhanced by PDGF, although PDGF alone did not induce differentiation. TGF-β induced extracellular signal-regulated kinase (ERK) phosphorylation and PDGF induced Akt phosphorylation. In addition, the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor, U0126, suppressed the osteogenic differentiation induced by TGF-β alone. Moreover, U0126 completely suppressed the osteogenic differentiation synergistically induced by TGF-β and PDGF, whereas the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002, only partially suppressed this effect. These results suggest that the enhancement of TGF-β-induced osteogenic differentiation by PDGF-induced PI3K/Akt-mediated signaling depends on TGF-β-induced MEK activity. Thus, PDGF positively modulates the TGF-β-induced osteogenic differentiation of hMSCs through synergistic crosstalk between MEK- and PI3K/Akt-mediated signaling.


International Journal of Molecular Medicine | 2011

Fibroblast growth factor-1-induced ERK1/2 signaling reciprocally regulates proliferation and smooth muscle cell differentiation of ligament-derived endothelial progenitor cell-like cells

Mikako Takahashi; Naoto Okubo; Naoyuki Chosa; Noriko Takahashi; Miho Ibi; Masaharu Kamo; Harumi Mizuki; Akira Ishisaki; Seiko Kyakumoto

The periodontal ligament (PDL) is a fibrous connective tissue located between the tooth root and the alveolar bone. We previously demonstrated that a single cell-derived culture of primarily cultured PDL fibroblasts has the potential to construct an endothelial cell (EC) marker-positive blood vessel-like structure, suggesting that the fibroblastic lineage cells in ligament tissue could act as the endothelial progenitor cells (EPCs), which regenerate to construct a vascular system around the damaged ligament tissue. Moreover, we showed that EPC-like fibroblasts expressed not only EC markers but also smooth muscle cell (SMC) markers. Generally, an interaction between ECs and SMCs regulates blood vessel development and remodeling, and is required for the formation of a mature and functional vascular network. However, the mechanism underlying the SMC differentiation of the ligament-derived EPC-like fibroblasts remains to be clarified. In this study, we showed that suppression of fibroblast growth factor 1 (FGF-1)-induced extracellular signal-regulated kinase 1/2 (ERK1/2) signaling with the MAPK/ERK kinase (MEK) inhibitor U0126 completely abolished the FGF-1-induced proliferation of the ligament-derived EPC-like fibroblasts. In addition, U0126 treatment of FGF-1-stimulated ligament-derived EPC-like fibroblasts significantly induced the SMC differentiation of the cells. Thus, FGF-1-induced ERK1/2 signaling not only promoted the proliferation of the ligament-derived EPC-like fibroblasts, but also suppressed the SMC differentiation of the cells, suggesting that FGF-1 controls the construction of a vascular network around the ligament tissue by regulating the proliferation and SMC differentiation of the EPC-like cells through ERK-mediated signaling.


BMC Oral Health | 2014

Effects of tongue cleaning on bacterial flora in tongue coating and dental plaque: a crossover study.

Miki Matsui; Naoyuki Chosa; Yu Shimoyama; Kentaro Minami; Shigenobu Kimura; Mitsuo Kishi

BackgroundThe effects of tongue cleaning on reconstruction of bacterial flora in dental plaque and tongue coating itself are obscure. We assessed changes in the amounts of total bacteria as well as Fusobacterium nucleatum in tongue coating and dental plaque specimens obtained with and without tongue cleaning.MethodsWe conducted a randomized examiner-blind crossover study using 30 volunteers (average 23.7 ± 3.2 years old) without periodontitis. After dividing randomly into 2 groups, 1 group was instructed to clean the tongue, while the other did not. On days 1 (baseline), 3, and 10, tongue coating and dental plaque samples were collected after recording tongue coating score (Winkel tongue coating index: WTCI). After a washout period of 3 weeks, the same examinations were performed with the subjects allocated to the alternate group. Genomic DNA was purified from the samples and applied to SYBR® Green-based real-time PCR to quantify the amounts of total bacteria and F. nucleatum.ResultsAfter 3 days, the WTCI score recovered to baseline, though the amount of total bacteria in tongue coating was significantly lower as compared to the baseline. In plaque samples, the bacterial amounts on day 3 and 10 were significantly lower than the baseline with and without tongue cleaning. Principal component analysis showed that variations of bacterial amounts in the tongue coating and dental plaque samples were independent from each other. Furthermore, we found a strong association between amounts of total bacteria and F. nucleatum in specimens both.ConclusionsTongue cleaning reduced the amount of bacteria in tongue coating. However, the cleaning had no obvious contribution to inhibit dental plaque formation. Furthermore, recovery of the total bacterial amount induced an increase in F. nucleatum in both tongue coating and dental plaque. Thus, it is recommended that tongue cleaning and tooth brushing should both be performed for promoting oral health.


International Journal of Biological Sciences | 2012

TGF-β-operated growth inhibition and translineage commitment into smooth muscle cells of periodontal ligament-derived endothelial progenitor cells through Smad- and p38 MAPK-dependent signals.

Mariko Yoshida; Naoto Okubo; Naoyuki Chosa; Tomokazu Hasegawa; Miho Ibi; Masaharu Kamo; Seiko Kyakumoto; Akira Ishisaki

The periodontal ligament (PDL) is a fibrous connective tissue that attaches the tooth to the alveolar bone. We previously demonstrated the ability of PDL fibroblast-like cells to construct an endothelial cell (EC) marker-positive blood vessel-like structure, indicating the potential of fibroblastic lineage cells in PDL tissue as precursors of endothelial progenitor cells (EPCs) to facilitate the construction of a vascular system around damaged PDL tissue. A vascular regeneration around PDL tissue needs proliferation of vascular progenitor cells and the subsequent differentiation of the cells. Transforming growth factor-β (TGF-β) is known as an inducer of endothelial-mesenchymal transition (EndMT), however, it remains to be clarified what kinds of TGF-β signals affect growth and mesenchymal differentiation of PDL-derived EPC-like fibroblastic cells. Here, we demonstrated that TGF-β1 not only suppressed the proliferation of the PDL-derived EPC-like fibroblastic cells, but also induced smooth muscle cell (SMC) markers expression in the cells. On the other hand, TGF-β1 stimulation suppressed EC marker expression. Intriguingly, overexpression of Smad7, an inhibitor for TGF-β-induced Smad-dependent signaling, suppressed the TGF-β1-induced growth inhibition and SMC markers expression, but did not the TGF-β1-induced downregulation of EC marker expression. In contrast, p38 mitogen-activated protein kinase (MAPK) inhibitor SB 203580 suppressed the TGF-β1-induced downregulation of EC marker expression. In addition, the TGF-β1-induced SMC markers expression of the PDL-derived cells was reversed upon stimulation with fibroblast growth factor (FGF), suggesting that the TGF-β1 might not induce terminal SMC differentiation of the EPC-like fibroblastic cells. Thus, TGF-β1 not only negatively controls the growth of PDL-derived EPC-like fibroblastic cells via a Smad-dependent manner but also positively controls the SMC-differentiation of the cells possibly at the early stage of the translineage commitment via Smad- and p38 MAPK-dependent manners.


Scientific Reports | 2015

The homeobox gene DLX4 promotes generation of human induced pluripotent stem cells

Naritaka Tamaoki; Kazutoshi Takahashi; Hitomi Aoki; Kazuki Iida; Tomoko Kawaguchi; Daijirou Hatakeyama; Masatoshi Inden; Naoyuki Chosa; Akira Ishisaki; Takahiro Kunisada; Toshiyuki Shibata; Naoki Goshima; Shinya Yamanaka; Ken-ichi Tezuka

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by defined transcription factors has been a well-established technique and will provide an invaluable resource for regenerative medicine. However, the low reprogramming efficiency of human iPSC is still a limitation for clinical application. Here we showed that the reprogramming potential of human dental pulp cells (DPCs) obtained from immature teeth is much higher than those of mature teeth DPCs. Furthermore, immature teeth DPCs can be reprogrammed by OCT3/4 and SOX2, conversely these two factors are insufficient to convert mature teeth DPCs to pluripotent states. Using a gene expression profiles between these two DPC groups, we identified a new transcript factor, distal-less homeobox 4 (DLX4), which was highly expressed in immature teeth DPCs and significantly promoted human iPSC generation in combination with OCT3/4, SOX2, and KLF4. We further show that activation of TGF-β signaling suppresses the expression of DLX4 in DPCs and impairs the iPSC generation of DPCs. Our findings indicate that DLX4 can functionally replace c-MYC and supports efficient reprogramming of immature teeth DPCs.

Collaboration


Dive into the Naoyuki Chosa's collaboration.

Top Co-Authors

Avatar

Akira Ishisaki

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seiji Yokota

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar

Miho Ibi

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitsuro Tanaka

Iwate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge