Naoyuki Takahata
Graduate University for Advanced Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Naoyuki Takahata.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Hsun Hua Chou; Toshiyuki Hayakawa; Sandra Diaz; Matthias Krings; Etty Indriati; Meave G. Leakey; Svante Pääbo; Yoko Satta; Naoyuki Takahata; Ajit Varki
Humans are genetically deficient in the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) because of an Alu-mediated inactivating mutation of the gene encoding the enzyme CMP-N-acetylneuraminic acid (CMP-Neu5Ac) hydroxylase (CMAH). This mutation occurred after our last common ancestor with bonobos and chimpanzees, and before the origin of present-day humans. Here, we take multiple approaches to estimate the timing of this mutation in relationship to human evolutionary history. First, we have developed a method to extract and identify sialic acids from bones and bony fossils. Two Neandertal fossils studied had clearly detectable Neu5Ac but no Neu5Gc, indicating that the CMAH mutation predated the common ancestor of humans and Neandertals, ≈0.5–0.6 million years ago (mya). Second, we date the insertion event of the inactivating human-specific sahAluY element that replaced the ancestral AluSq element found adjacent to exon 6 of the CMAH gene in the chimpanzee genome. Assuming Alu source genes based on a phylogenetic tree of human-specific Alu elements, we estimate the sahAluY insertion time at ≈2.7 mya. Third, we apply molecular clock analysis to chimpanzee and other great ape CMAH genes and the corresponding human pseudogene to estimate an inactivation time of ≈2.8 mya. Taken together, these studies indicate that the CMAH gene was inactivated shortly before the time when brain expansion began in humankinds ancestry, ≈2.1–2.2 mya. In this regard, it is of interest that although Neu5Gc is the major sialic acid in most organs of the chimpanzee, its expression is selectively down-regulated in the brain, for as yet unknown reasons.
Journal of Molecular Evolution | 1992
Satoshi Horai; Yoko Satta; Kenji Hayasaka; Rumi Kondo; Tadashi Inoue; Takafumi Ishida; Seiji Hayashi; Naoyuki Takahata
SummaryMolecular biology has resurrected C. Darwin and T.H. Huxleys question about the origin of humans, but the precise branching pattern and dating remain controversial. To settle this issue, a large amount of sequence information is required. We determined mitochondrial (mt) DNA sequences for five hominoids; pygmy and common chimpanzees, gorilla, orangutan, and siamang. The common region compared with the known human sequence is 4759 by long, encompassing genes for 11 transfer RNAs and 6 proteins. Because of the high substitution rates in mammalian mtDNA and an unprecedentedly large region compared, the sequence differences clearly indicate that the closest relatives to human are chimpanzees rather than gorilla. For dating the divergences of human, chimpanzee, and gorilla, we used only unsaturated parts of sequence differences in which the mtDNA genealogy is not obscured by multiple substitutions. The result suggests that gorilla branched off 7.7 ± 0.7 million years (Myr) ago and human 4.7 ± 0.5 Myr ago; the time difference between these divergences being as long as 3 Myr.
Proceedings of the Royal Society B: Biological Sciences = Proceedings of the Royal Society B: Biological Sciences | 2000
Sandra Nagl; Herbert Tichy; Werner Mayer; Naoko Takezaki; Naoyuki Takahata; Jan Klein
According to a widely held view, the more than 300 species of haplochromine cichlid fishes in Lake Victoria (LV), East Africa, originated from a single founder species in less than 12 000 years. This view, however, does not follow from the published geological and molecular evidence. The former does indeed suggest that the LV basin dried out less than 15 000 years ago, but it does not provide any information about the species that re–colonized the new lake or that remained in the rivers draining the area. The molecular evidence is inconclusive with respect to the origin of the LV haplochromines because cichlids from critical regions around LV were not adequately sampled; and as far as the age of the LV haplochromines is concerned, it in fact led to an estimate of 250 000–750 000 years old. In the present study, mitochondrial DNA (control region) variation was determined by heteroduplex and sequencing analyses of more than 670 specimens collected at widely distributed East African riverine and lacustrine localities. The analyses revealed the existence of seven haplogroups (I–VII) distinguishable by characteristic substitutions. All endemic LV samples tested fell into one of these haplogroups (V) which, however, was also found to be present at various other localities, both riverine and lacustrine, outside LV . Within this haplogroup, four subgroups (VA through VD) could be distinguished, two of which (VB and VC) were represented in LV and at other localities. The great majority of the LV haplochromine species could be classified as belonging to the VC subgroup, which was found only in LVand in the rivers draining into it. Hence, while the endemic haplochromine species of LVcould not have originated from a single founding population, the lake does harbour a large species flock which probably arose in situ.
Current Opinion in Genetics & Development | 1996
Naoyuki Takahata
DNA sequence data are generally interpreted as favouring Kimuras neutral theory but not without dissent and often with a great deal of controversy with respect to molecular clocks, DNA polymorphism, adaptive evolution, and gene genealogy. Although the theory serves as a guiding principle, many issues concerning mutation, recombination, and selection remain unsettled. Of particular importance is the need for more knowledge about the function and structure of molecules.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Toshiyuki Hayakawa; Yoko Satta; Pascal Gagneux; Ajit Varki; Naoyuki Takahata
Inactivation of the CMP-N-acetylneuraminic acid hydroxylase gene has provided an example of human-specific genomic mutation that results in a widespread biochemical difference between human and nonhuman primates. We have found that, although a region containing a 92-bp exon and an AluSq element in the hydroxylase gene is intact in all nonhuman primates examined, the same region in the human genome is replaced by an AluY element that was disseminated at least one million years ago. We propose a mechanistic model for this Alu-mediated replacement event, which deleted the 92-bp exon and thus inactivated the human hydroxylase gene. It is suggested that Alu elements have played potentially important roles in genotypic and phenotypic evolution in the hominid lineage.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Mineyo Iwase; Yoko Satta; Yuriko Hirai; Hirohisa Hirai; Hirotami T. Imai; Naoyuki Takahata
The mammalian amelogenin (AMEL) genes are found on both the X and Y chromosomes (gametologous). Comparison of the genomic AMEL sequences in five primates and three other mammals reveals that the 5′ portion of the gametologous AMEL loci began to differentiate in the common ancestor of extant mammals, whereas the 3′ portion differentiated independently within species of different mammals. The boundary is marked by a transposon insertion in intron 2 and is shared by all species examined. In addition, 540-kb DNA sequences from the short arm of the human X chromosome are aligned with their Y gametologous sequences. The pattern and extent of sequence differences in the 5′ portion of the AMEL loci extend to a proximal region that contains the ZFX locus, and those in the 3′ portion extend all the way down to the pseudoautosomal boundary (PAB)1. We concluded that the AMEL locus spans an ancient PAB, and that both the ancient and present PABs were determined by chance events during the evolution of mammals and primates. Sex chromosome differentiation likely took place in a region that contains the male-determining loci by suppressing homologous recombination.
Proceedings of the Royal Society B: Biological Sciences = Proceedings of the Royal Society B: Biological Sciences | 1997
Vladimir Vincek; Colm O'hUigin; Yoko Satta; Naoyuki Takahata; Peter T. Boag; Peter R. Grant; B. Rosemary Grant; Jan Klein
A key assumption of many allopatric speciation models is that evolution in peripheral or isolated populations is facilitated by drastic reductions in population size. Population bottlenecks are believed to lead to rapid changes in gene frequencies through genetic drift, to facilitate rapid emergence of novel phenotypes, and to enhance reproductive isolation via genetic revolutions. For such effects to occur, founding populations must be very small, and remain small for some time after founding. This assumption has, however, rarely been tested in nature. One approach is to exploit the polymorphism of the major histocompatibility complex (Mhc) to obtain information about the founding population. Here, we use the Mhc polymorphism to estimate the size of the founding population of Darwins finches in the Galápagos Archipelago. The results indicate that the population could not have been smaller than 30 individuals.
Immunogenetics | 1998
Naoyuki Takahata; Yoko Satta
Abstract To evaluate the effect of balancing selection and intragenic recombination (or gene conversion) at six individual HLA loci, synonymous nucleotide diversity in different exon groups is examined within (πw) and between (πb) allelic lineages that may be defined by either serological or DNA sequence differences. Both π values are high in exons which encode for the peptide binding region (PBR) and tend to decrease in other exons. The value of πw is significantly smaller than that of πb in any exon of any locus. However, even πw is much greater than nucleotide diversity at non-HLA loci. These observations provide additional strong evidence for the operation of balancing selection in PBR-encoding exons and its indirect effects on polymorphism at linked neighboring regions. It appears that allelic lineages have generally evolved in isolation but the linkage relationships within and between exons are incomplete throughout the long evolutionary history. To quantify intragenic recombination and account for the large discrepancy between the HLA and non-HLA diversity, a population genetics model is analyzed with special reference to the evolution of modern humans. The analysis suggests that the recombination rate between two sites 1000 base pairs apart is about 10–5 per generation and that the effective size of human populations (equivalent roughly to the number of breeding individuals in a randomly mating population) has dropped from 105 to 104 in most of the Quaternary. One possibility for this reduction is discussed.
Human Genetics | 1998
Blazenka Grahovac; Rem I. Sukernik; Colm O'hUigin; Zofia Zaleska-Rutczynska; Nadezhda Blagitko; Olga Raldugina; Tanja Kosutic; Yoko Satta; Felipe Figueroa; Naoyuki Takahata; Jan Klein
Abstract The populations that colonized Siberia diverged from one another in the Paleolithic and evolved in isolation until today. These populations are therefore a rich source of information about the conditions under which the initial divergence of modern humans occurred. In the present study we used the HLA system, first, to investigate the evolution of the human major histocompatibility complex (MHC) itself, and second, to reveal the relationships among Siberian populations. We determined allelic frequencies at five HLA class II loci (DRB1, DQA1, DQB1, DPA1, and DPB1) in seven Siberian populations (Ket, Evenk, Koryak, Chukchi, Nivkh, Udege, and Siberian Eskimo) by the combination of single-stranded conformational polymorphism and DNA sequencing analysis. We then used the gene frequency data to deduce the HLA class II haplotypes and their frequencies. Despite high polymorphism at four of the five loci, no new alleles could be detected. This finding is consistent with a conserved evolution of human class II MHC genes. We found a high number of HLA class II haplotypes in Siberian populations. More haplotypes have been found in Siberia than in any other population. Some of the haplotypes are shared with non-Siberian populations, but most of them are new, and some represent “forbidden” combinations of DQA1 and DQB1 alleles. We suggest that a set of “public” haplotypes was brought to Siberia with the colonizers but that most of the new haplotypes were generated in Siberia by recombination and are part of a haplotype pool that is turning over rapidly. The allelic frequencies at the DRB1 locus divide the Siberian populations into eastern and central Siberian branches; only the former shows a clear genealogical relationship to Amerinds.
Theoretical Population Biology | 1990
Naoyuki Takahata; Montgomery Slatkin
Gene genealogy in two partially isolated populations which diverged at a given time t in the past and have since been exchanging individuals at a constant rate m is studied based upon an analytic method for large t and a simulation method for any t. Particular attention is paid to the conditions under which neutral genes sampled from populations are mono-, para-, and polyphyletic in terms of coalescence (divergence) times of genes. It is shown tha the probability of monophyly is high if M = 2Nm less than 0.5 and T = t/(2N) greater than 1, where N is the size of ancestral and descendant haploid populations, in which case most gene genealogies are likely to be concordant with the population relatedness. This probbility decreases as the sample size of genes increases. On the other hand, the case where the probability of monophyly is low will be either that of M greater than 1 and any T or that of M less than 1 and T less than 1, but the clear distinction between these conditions appears very difficult to make. These results are also examined if the gene genealogy is reconstructed from nucleotide differences. It is then shown that the results based upon coalescence times remain valid if the number of nucleotide differences between any pair of genes is not much smaller than 10. To observe such large nucleotide differences in small populations and therefore infer a reliable gene genealogy, we must examine a fairly long stretch of DNA sequences.