Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Napaphak Jaipakdee is active.

Publication


Featured researches published by Napaphak Jaipakdee.


International Journal of Pharmaceutics | 2015

A monolithic drug-in-adhesive patch of methoxyflavones from Kaempferia parviflora: In vitro and in vivo evaluation

Sarunya Tuntiyasawasdikul; Ekapol Limpongsa; Napaphak Jaipakdee; Bungorn Sripanidkulchai

The aim of this study was to design and develop a suitable monolithic drug-in-adhesive type patch of methoxyflavones from Kaempferia parviflora (K. parviflora) using acrylic polymer Durotak(®) 87-2852. The absence of interaction between components in K. parviflora extract and the adhesive polymer was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Thirteen K. parviflora patches with different extract loading and permeation enhancers were prepared by the solvent evaporation technique. All formulations showed good physicochemical properties, good stability and satisfactory adhesive properties. The effect of K. parviflora loading and permeation enhancers on methoxyflavones transport across porcine ear skin was also evaluated. The permeation of methoxyflavones increased with the amount of K. parviflora. Among the permeation enhancers investigated, oleic acid increased permeation flux of total methoxyflavones by 1.25 fold compared to the control; whereas menthol shortened the lag time. When oleic acid and menthol were combined, the maximum flux of methoxyflavones and shortest lag time were observed, suggesting a synergistic effect of menthol with oleic acid. The optimal patch formulation contained 15% K. parviflora, 3% oleic acid and 3% of menthol, and this was evaluated via an in vivo pharmacokinetic study using rats. The maximum plasma drug concentration (Cmax) of total methoxyflavones was 218.08ng/ml with Tmax at 8h. The concentrations of methoxyflavones in plasma continued to increase until the end of the experiment, indicating a sustained release into the systemic circulation.


Aaps Pharmscitech | 2014

Transdermal Permeation of Kaempferia parviflora Methoxyflavones from Isopropyl Myristate-Based Vehicles

Sarunya Tuntiyasawasdikul; Ekapol Limpongsa; Napaphak Jaipakdee; Bungorn Sripanidkulchai

Kaempferia parviflora (K. parviflora) rhizomes have long been used in traditional folk medicines and as general health-promoting agents. Several biological activities of K. parviflora, especially its anti-inflammatory effect, are due to its major constituents, methoxyflavones. However, the oral bioavailability of these methoxyflavones has been shown to be low. The aim of this study was to investigate the permeation behaviors of K. parviflora methoxyflavones from isopropyl myristate (IPM)-based vehicles. We studied the effects of ethanol and propylene glycol (PG) as the hydrophilic, solvent-type vehicles as well as fatty acids as the permeation enhancers. A permeation experiment was performed in vitro, using side-by-side diffusion cells through the full thickness of pig ear skin. The solubility and permeation of methoxyflavones were able to be modified by choice and ratio of vehicles. The ethanol/IPM vehicle was shown to be more effective in enhancing the solubility and permeation of methoxyflavones when compared to the PG/IPM vehicle. Regarding an optimal balance between solubility or affinity to vehicle and skin to vehicle partition coefficient, the ethanol/IPM vehicle in the ratio of 1:9 maximized the flux. Among the investigated fatty acids, oleic acid showed the greatest enhancing effect on the permeation of methoxyflavones, indicating that saturated fatty acids are less effective than unsaturated fatty acids. Long chain fatty acids increased diffusion coefficient parameter and shortened the lag time. The number of carbon atoms and double bonds of fatty acids did not show direct relation to the profile of permeation of methoxyflavones.


Aaps Pharmscitech | 2017

Effects of Vehicles and Enhancers on the Skin Permeation of Phytoestrogenic Diarylheptanoids from Curcuma comosa

Sarunya Tuntiyasawasdikul; Ekapol Limpongsa; Napaphak Jaipakdee; Bungorn Sripanidkulchai

Curcuma comosa (C. comosa) is widely used in traditional medicine as a dietary supplement for health promotion in postmenopausal women in Thailand. It contains several diarylheptanoids, which are considered to be a novel class of phytoestrogens. However, the diarylheptanoids isolated from the plant rhizome are shown to have low oral bioavailability and faster elimination characteristics. The aim of this study was to investigate the permeation behavior of the active compounds of diarylheptanoids. The effects of binary vehicle systems and permeation enhancers on diarylheptanoids permeation and accumulation within the skin were studied using side-by-side diffusion cells through the porcine ear skin. Among the tested binary vehicle systems, the ethanol/water vehicle appeared to be the most effective system for diarylheptanoids permeation with the highest flux and shortest lag time. The presence of transcutol in the vehicle system significantly increased diarylheptanoid’s permeation and accumulation within the skin in a concentration-dependent manner. Although the presence of terpenes in formulation decreased the flux of diarylheptanoids, it raised the amount of diarylheptanoids retained within the skin substantially. Based on the feasibility of diarylheptanoid permeation, C. comosa extract should be further developed into an effective transdermal product for health benefits and hormone replacement therapy.


Pharmaceutical Development and Technology | 2016

Optimization of minoxidil microemulsions using fractional factorial design approach

Napaphak Jaipakdee; Ekapol Limpongsa; Thaned Pongjanyakul

Abstract The objective of this study was to apply fractional factorial and multi-response optimization designs using desirability function approach for developing topical microemulsions. Minoxidil (MX) was used as a model drug. Limonene was used as an oil phase. Based on solubility, Tween 20 and caprylocaproyl polyoxyl-8 glycerides were selected as surfactants, propylene glycol and ethanol were selected as co-solvent in aqueous phase. Experiments were performed according to a two-level fractional factorial design to evaluate the effects of independent variables: Tween 20 concentration in surfactant system (X1), surfactant concentration (X2), ethanol concentration in co-solvent system (X3), limonene concentration (X4) on MX solubility (Y1), permeation flux (Y2), lag time (Y3), deposition (Y4) of MX microemulsions. It was found that Y1 increased with increasing X3 and decreasing X2, X4; whereas Y2 increased with decreasing X1, X2 and increasing X3. While Y3 was not affected by these variables, Y4 increased with decreasing X1, X2. Three regression equations were obtained and calculated for predicted values of responses Y1, Y2 and Y4. The predicted values matched experimental values reasonably well with high determination coefficient. By using optimal desirability function, optimized microemulsion demonstrating the highest MX solubility, permeation flux and skin deposition was confirmed as low level of X1, X2 and X4 but high level of X3.


Pharmaceutical Development and Technology | 2015

Skin deposition and permeation of finasteride in vitro: effects of propylene glycol, ethanol and sodium lauryl sulfate

Ekapol Limpongsa; Napaphak Jaipakdee; Thaned Pongjanyakul

Abstract The objective of this study was to investigate the effects of propylene glycol (PG), ethanol (EtOH) and sodium lauryl sulfate (SLS) on the in vitro deposition and permeation of finasteride (FNS). A side-by-side diffusion cell mounted with a pig ear skin and a saturated solution of FNS in PG (10, 20% v/v), EtOH (10, 20% v/v) or SLS (0.5, 1% w/v) vehicles were used. Incorporation of PG, EtOH or SLS caused a significant increase in FNS solubility both in the solution and on the skin with SLS > EtOH > PG. The results obtained from skin deposition studies showed that the FNS deposition rate and time increased in the same order as that of the solubility. The deposition kinetics of FNS solubilized in PG, EtOH and SLS vehicles followed either zero-order, square-root-of-time or pseudo-first-order kinetic models depending on the type and concentration of the enhancer. The permeation studies demonstrated that FNS permeation fluxes were enhanced only by EtOH vehicles. These results suggest that PG and SLS could be used as deposition enhancers, while EtOH could be the effective permeation enhancer of FNS. The obtained results can be used as the considerable insights for formulating the topical and transdermal products of FNS.


International Journal of Pharmaceutics | 2018

Preparation of Curcuma comosa tablets using liquisolid techniques: In vitro and in vivo evaluation

Napaphak Jaipakdee; Ekapol Limpongsa; Bungorn Sripanidkulchai; Pawinee Piyachaturawat

&NA; Curcuma comosa (C. comosa) is a Thai medicinal herb that provides numerous pharmacologic activities due to its estrogen‐like action. This study aimed to investigate the use of liquisolid technique to prepare tablets containing oleoresin‐like crude extract of C. comosa, and to improve the dissolution profiles of its major compounds, diarylheptanoids (DAs). Free flowing powders of C. comosa extract were obtained by adsorption onto solid carriers, microcrystalline cellulose, with colloidal silica as coating material. FTIR results ruled out possible interactions between C. comosa extract and excipients. The results indicated that all of liquisolid tablets met the USP requirements. The release of DAs were significantly increased through liquisolid formulations, compared to crude extract. By decreasing the ratio of carrier to coating from 20 to 10, an improvement in dissolution rate was observed. Addition of additives ‐ namely polymer (polyvinyl pyrrolidone) and/or nonvolatile liquid (propylene glycol) affected tablet properties which involved longer disintegration time and lower DA dissolution. Optimized C. comosa liquisolid formulation was prepared in a carrier to coating ratio of 10 without additives. Stability studies showed that physical properties of liquisolid tablet were not affected by aging, but percent remaining and dissolution profiles of DAs were influenced by storage temperature. In vivo pharmacokinetic behavior of the optimized C. comosa liquisolid tablets was investigated following a single oral administration to rabbits. The results proved that the method used for preparation of liquisolid led to C. comosa tablets with low variation in content uniformity and tablet properties, as well as enhanced dissolution behavior.


Drug Development and Industrial Pharmacy | 2018

Development and evaluation of topical films containing phytoestrogenic diaryheptanoids from Curcuma comosa extract

Sarunya Tuntiyasawasdikul; Ekapol Limpongsa; Napaphak Jaipakdee; Bungorn Sripanidkulchai

Abstract Rational: Phytoestrogens have been found to delay signs of skin aging in post-menopausal women, in a way similar to the effects of estrogens. Diarylheptanoids from a rhizome of traditional Thai herb named Curcuma comosa is considered to be a novel class of phytoestrogens. Objectives: The aims of this study were to prepare effective topical films using mixed types and vary ratios of hydrophobic (Eudragit RL, Eudragit RS, and Eudragit NE) and hydrophilic polymer (hydroxylpropyl methycellulose, HPMC) with Transcutol as a permeation enhancer for delivery of diarylheptanoids to improve signs of skin aging in post-menopausal women. Material and methods: Topical films were characterized for their physical and mechanical properties. In vitro release, skin permeation and accumulation were evaluated using Franz diffusion cell and the concentrations of diarylheptanoids were determined using high-performance liquid chromatography. Results: The combined formulations between HPMC and Eudragit NE showed the satisfactory physical and mechanical properties, and also provided the highest amount of drug released compared to Eudragit RL and Eudragit RS. When the proportion of HPMC amount in the polymer matrix increased, the cumulative drug release also increased (HPMC: Eudragit NE 6:4 > 5:5 > 4:6). Moreover, they provided a high accumulation of diarylheptanoids within skin when using transcutol as a permeation enhancer. Conclusion: The obtained data provided the skin permeation and accumulation behavior of diarylheptanoids, indicating the feasibility of a skin delivery of the C. comosa extract. The developed films might be topically used as an alternative therapy for protection of skin aging in peri and post-menopausal women.


International Journal of Applied Pharmaceutics | 2018

PREPARATION AND CHARACTERIZATION OF POLY (VINYL ALCOHOL)–POLY (VINYL PYRROLIDONE) MUCOADHESIVE BUCCAL PATCHES FOR DELIVERY OF LIDOCAINE HCL

Napaphak Jaipakdee; Thaned Pongjanyakul; Ekapol Limpongsa


วารสารเภสัชศาสตร์อีสาน (Isan Journal of Pharmaceutical Sciences, IJPS) | 2015

Evaluation of physical stability, efficacy and preference of anticellulite cream containing natural compounds

Napaphak Jaipakdee; Kamolwan Trakanchaiwong; Ekapol Limpongsa


วารสารเภสัชศาสตร์อีสาน (Isan Journal of Pharmaceutical Sciences, IJPS) | 2013

Development of Tea Extract Balms

Rujira Charoenniwassakul; Natsajee Nuankaew; Ekapol Limpongsa; Napaphak Jaipakdee

Collaboration


Dive into the Napaphak Jaipakdee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge