Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Narayanan Eswar is active.

Publication


Featured researches published by Narayanan Eswar.


Methods of Molecular Biology | 2008

Protein Structure Modeling with MODELLER

Narayanan Eswar; David Eramian; Ben Webb; Min-yi Shen; Andrej Sali

Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. This chapter presents an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of similar protocols (correction of protcols) has resulted in models of useful accuracy for domains in more than half of all known protein sequences.


Nucleic Acids Research | 2004

MODBASE, a database of annotated comparative protein structure models, and associated resources

Ursula Pieper; Narayanan Eswar; Ben Webb; David Eramian; Libusha Kelly; David T. Barkan; Hannah Carter; Parminder Mankoo; Rachel Karchin; Marc A. Marti-Renom; Fred P. Davis; Andrej Sali

ModBase (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by ModPipe, an automated modeling pipeline that relies primarily on Modeller for fold assignment, sequence-structure alignment, model building and model assessment (http://salilab.org/modeller/). ModBase currently contains almost 30 million reliable models for domains in 4.7 million unique protein sequences. ModBase allows users to compute or update comparative models on demand, through an interface to the ModWeb modeling server (http://salilab.org/modweb). ModBase models are also available through the Protein Model Portal (http://www.proteinmodelportal.org/). Recently developed associated resources include the AllosMod server for modeling ligand-induced protein dynamics (http://salilab.org/allosmod), the AllosMod-FoXS server for predicting a structural ensemble that fits an SAXS profile (http://salilab.org/allosmod-foxs), the FoXSDock server for protein–protein docking filtered by an SAXS profile (http://salilab.org/foxsdock), the SAXS Merge server for automatic merging of SAXS profiles (http://salilab.org/saxsmerge) and the Pose & Rank server for scoring protein–ligand complexes (http://salilab.org/poseandrank). In this update, we also highlight two applications of ModBase: a PSI:Biology initiative to maximize the structural coverage of the human alpha-helical transmembrane proteome and a determination of structural determinants of human immunodeficiency virus-1 protease specificity.


Current protocols in protein science | 2007

Comparative Protein Structure Modeling Using MODELLER

Narayanan Eswar; Ben Webb; Marc A. Marti-Renom; M.S. Madhusudhan; David Eramian; Min-yi Shen; Ursula Pieper; Andrej Sali

Functional characterization of a protein sequence is a common goal in biology, and is usually facilitated by having an accurate three‐dimensional (3‐D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3‐D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3‐D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target‐template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. Curr. Protoc. Protein Sci. 50:2.9.1‐2.9.31.


Cell | 2001

Structure of the 80S Ribosome from Saccharomyces cerevisiae—tRNA-Ribosome and Subunit-Subunit Interactions

Christian M.T. Spahn; Roland Beckmann; Narayanan Eswar; Pawel A. Penczek; Andrej Sali; Günter Blobel; Joachim Frank

A cryo-EM reconstruction of the translating yeast 80S ribosome was analyzed. Computationally separated rRNA and protein densities were used for docking of appropriately modified rRNA models and homology models of yeast ribosomal proteins. The core of the ribosome shows a remarkable degree of conservation. However, some significant differences in functionally important regions and dramatic changes in the periphery due to expansion segments and additional ribosomal proteins are evident. As in the bacterial ribosome, bridges between the subunits are mainly formed by RNA contacts. Four new bridges are present at the periphery. The position of the P site tRNA coincides precisely with its prokaryotic counterpart, with mainly rRNA contributing to its molecular environment. This analysis presents an exhaustive inventory of an eukaryotic ribosome at the molecular level.


Nucleic Acids Research | 2003

Tools for comparative protein structure modeling and analysis.

Narayanan Eswar; Bino John; Nebojsa Mirkovic; Andras Fiser; Valentin A. Ilyin; Ursula Pieper; Ashley C. Stuart; Marc A. Marti-Renom; Mallur S. Madhusudhan; Bozidar Yerkovich; Andrej Sali

The following resources for comparative protein structure modeling and analysis are described (http://salilab.org): MODELLER, a program for comparative modeling by satisfaction of spatial restraints; MODWEB, a web server for automated comparative modeling that relies on PSI-BLAST, IMPALA and MODELLER; MODLOOP, a web server for automated loop modeling that relies on MODELLER; MOULDER, a CPU intensive protocol of MODWEB for building comparative models based on distant known structures; MODBASE, a comprehensive database of annotated comparative models for all sequences detectably related to a known structure; MODVIEW, a Netscape plugin for Linux that integrates viewing of multiple sequences and structures; and SNPWEB, a web server for structure-based prediction of the functional impact of a single amino acid substitution.


Cell | 2001

Architecture of the Protein-Conducting Channel Associated with the Translating 80S Ribosome

Roland Beckmann; Christian M.T. Spahn; Narayanan Eswar; Jürgen Helmers; Pawel A. Penczek; Andrej Sali; Joachim Frank; Günter Blobel

In vitro assembled yeast ribosome-nascent chain complexes (RNCs) containing a signal sequence in the nascent chain were immunopurified and reconstituted with the purified protein-conducting channel (PCC) of yeast endoplasmic reticulum, the Sec61 complex. A cryo-EM reconstruction of the RNC-Sec61 complex at 15.4 A resolution shows a tRNA in the P site. Distinct rRNA elements and proteins of the large ribosomal subunit form four connections with the PCC across a gap of about 10-20 A. Binding of the PCC influences the position of the highly dynamic rRNA expansion segment 27. The RNC-bound Sec61 complex has a compact appearance and was estimated to be a trimer. We propose a binary model of cotranslational translocation entailing only two basic functional states of the translating ribosome-channel complex.


Cell | 2003

Study of the Structural Dynamics of the E. coli 70S Ribosome Using Real-Space Refinement

Haixiao Gao; Jayati Sengupta; Mikel Valle; Andrei Korostelev; Narayanan Eswar; Scott M. Stagg; Patrick Van Roey; Rajendra K. Agrawal; Stephen C. Harvey; Andrej Sali; Michael S. Chapman; Joachim Frank

Cryo-EM density maps showing the 70S ribosome of E. coli in two different functional states related by a ratchet-like motion were analyzed using real-space refinement. Comparison of the two resulting atomic models shows that the ribosome changes from a compact structure to a looser one, coupled with the rearrangement of many of the proteins. Furthermore, in contrast to the unchanged inter-subunit bridges formed wholly by RNA, the bridges involving proteins undergo large conformational changes following the ratchet-like motion, suggesting an important role of ribosomal proteins in facilitating the dynamics of translation.


Bioinformatics | 2005

LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources

Rachel Karchin; Mark Diekhans; Libusha Kelly; Daryl J. Thomas; Ursula Pieper; Narayanan Eswar; David Haussler; Andrej Sali

MOTIVATION The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity. RESULTS We have developed LS-SNP, a genomic scale software pipeline to annotate nsSNPs. LS-SNP comprehensively maps nsSNPs onto protein sequences, functional pathways and comparative protein structure models, and predicts positions where nsSNPs destabilize proteins, interfere with the formation of domain-domain interfaces, have an effect on protein-ligand binding or severely impact human health. It currently annotates 28,043 validated SNPs that produce amino acid residue substitutions in human proteins from the SwissProt/TrEMBL database. Annotations can be viewed via a web interface either in the context of a genomic region or by selecting sets of SNPs, genes, proteins or pathways. These results are useful for identifying candidate functional SNPs within a gene, haplotype or pathway and in probing molecular mechanisms responsible for functional impacts of nsSNPs. AVAILABILITY http://www.salilab.org/LS-SNP CONTACT: [email protected] SUPPLEMENTARY INFORMATION http://salilab.org/LS-SNP/supp-info.pdf.


Nature Structural & Molecular Biology | 2000

Protein structure modeling for structural genomics

Roberto Sanchez; Ursula Pieper; Francisco Melo; Narayanan Eswar; Marc A. Marti-Renom; M.S Madhusudhan; Nebojsa Mirkovic; Andrej Sali

The shapes of most protein sequences will be modeled based on their similarity to experimentally determined protein structures. The current role, limitations, challenges and prospects for protein structure modeling (using information about genes and genomes) are discussed in the context of structural genomics.


Nucleic Acids Research | 2003

EVA: evaluation of protein structure prediction servers

Ingrid Y.Y. Koh; Volker A. Eyrich; Marc A. Marti-Renom; Dariusz Przybylski; Mallur S. Madhusudhan; Narayanan Eswar; Osvaldo Graña; Florencio Pazos; Alfonso Valencia; Andrej Sali; Burkhard Rost

EVA (http://cubic.bioc.columbia.edu/eva/) is a web server for evaluation of the accuracy of automated protein structure prediction methods. The evaluation is updated automatically each week, to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently assesses servers for secondary structure prediction, contact prediction, comparative protein structure modelling and threading/fold recognition. Every day, sequences of newly available protein structures in the Protein Data Bank (PDB) are sent to the servers and their predictions are collected. The predictions are then compared to the experimental structures once a week; the results are published on the EVA web pages. Over time, EVA has accumulated prediction results for a large number of proteins, ranging from hundreds to thousands, depending on the prediction method. This large sample assures that methods are compared reliably. As a result, EVA provides useful information to developers as well as users of prediction methods.

Collaboration


Dive into the Narayanan Eswar's collaboration.

Top Co-Authors

Avatar

Andrej Sali

University of California

View shared research outputs
Top Co-Authors

Avatar

Ursula Pieper

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Webb

California Institute for Quantitative Biosciences

View shared research outputs
Top Co-Authors

Avatar

David Eramian

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Libusha Kelly

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Min-yi Shen

University of California

View shared research outputs
Top Co-Authors

Avatar

Andras Fiser

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge