Narazah Mohd Yusoff
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Narazah Mohd Yusoff.
BMC Cancer | 2015
Norashikin Zakaria; Narazah Mohd Yusoff; Zubaidah Zakaria; Moon Nian Lim; Puteri Baharuddin; Kamal Shaik Fakiruddin; Badrul Hisham Yahaya
BackgroundDespite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).MethodsWe isolated putative lung CSCs from lung adenocarcinoma cells (A549 and H2170) and normal stem cells from normal bronchial epithelial cells (PHBEC) on the basis of positive expression of stem cell surface markers (CD166, CD44, and EpCAM) using fluorescence-activated cell sorting. The isolated cells were then characterised for their self-renewal characteristics, differentiation capabilities, expression of stem cell transcription factor and in vivo tumouregenicity. The transcriptomic profiles of putative lung CSCs then were obtained using microarray analysis. Significantly regulated genes (p < 0.05, fold change (FC) > 2.0) in putative CSCs were identified and further analysed for their biological functions using the Database for Annotation, Visualization, and Integrated Discovery (DAVID).ResultsThe putative lung CSCs phenotypes of CD166+/CD44+ and CD166+/EpCAM+ showed multipotent characteristics of stem cells, including the ability to differentiate into adipogenic and osteogenic cells, self-renewal, and expression of stem cell transcription factors such as Sox2 and Oct3/4. Moreover, the cells also shows the in vivo tumouregenicity characteristic when transplanted into nude mice. Microarray and bioinformatics data analyses revealed that the putative lung CSCs have molecular signatures of both normal and cancer stem cells and that the most prominent biological functions are associated with angiogenesis, migration, pro-apoptosis and anti-apoptosis, osteoblast differentiation, mesenchymal cell differentiation, and mesenchyme development. Additionally, self-renewal pathways such as the Wnt and hedgehog signalling pathways, cancer pathways, and extracellular matrix (ECM)-receptor interaction pathways are significantly associated with the putative lung CSCs.ConclusionThis study revealed that isolated lung CSCs exhibit the characteristics of multipotent stem cells and that their genetic composition might be valuable for future gene and stem cells therapy for lung cancer.
Oncology Reports | 2016
Puteri Baharuddin; Nazilah Abdul Satar; Kamal Shaik Fakiruddin; Norashikin Zakaria; Moon Nian Lim; Narazah Mohd Yusoff; Zubaidah Zakaria; Badrul Hisham Yahaya
Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10–40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC.
Neonatology | 2006
Surini Yusoff; Hans Van Rostenberghe; Narazah Mohd Yusoff; Norlelawati A.Talib; Noraida Ramli; N. Zainal A.N. Ismail; W. Pauzi W. Ismail; Masafumi Matsuo; Hisahide Nishio
Background: Gilbert syndrome is caused by defects in the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene. These mutations differ among different populations and many of them have been found to be genetic risk factors for the development of neonatal jaundice. Objectives: The objective was to determine the frequencies of the following mutations in the UGT1A1 gene: A(TA)7TAA (the most common cause of Gilbert syndrome in Caucasians), G71R (more common in the Japanese and Taiwanese population), and G493R (described in a homozygous Malay woman with Crigler-Najjar syndrome type 2) in a group of Malaysian babies with hyperbilirubinemia and a group of normal controls. Methods: The GeneScan fragment analysis was used to detect the A(TA)7TAA variant. Mutation screening of both G71R and G493R was performed using denaturing high performance liquid chromatography. Results: Fourteen out of fifty-five neonates with hyperbilirubinemia (25%) carried the A(TA)7TAA mutation (10 heterozygous, 4 homozygous). Seven out of fifty controls (14%) carried this mutation (6 heterozygous, 1 homozygous). The allelic frequencies for hyperbilirubinemia and control patients were 16 and 8%, respectively (p = 0.20). Heterozygosity for the G71R mutation was almost equal among both groups (5.5% for hyperbilirubinemia patients and 6.0% for controls; p = 0.61). One subject (1.8%) in the hyperbilirubinemia group and none of the controls were heterozygous for the G493R mutation (p = 0.476). Conclusions: The A(TA)7TAA seems more common than the G71R and G493R mutations in the Malaysian population.
Microvascular Research | 2013
Omar Saeed Ali Al-Salahi; Chan Kit-Lam; Amin Malik Shah Abdul Majid; Fouad Saleih R. Al-Suede; Sultan Ayesh Mohammed Saghir; Wan Zaidah Abdullah; Mohamed B. Khadeer Ahamed; Narazah Mohd Yusoff
Targeting angiogenesis could be an excellent strategy to combat angiogenesis-dependent pathophysiological conditions such as cancer, rheumatoid arthritis, obesity, systemic lupus erythematosus, psoriasis, proliferative retinopathy and atherosclerosis. Recently a number of clinical investigations are being undertaken to assess the potential therapeutic application of various anti-angiogenic agents. Many of these angiogenesis inhibitors are directed against the functions of endothelial cells, which are considered as the building blocks of blood vessels. Similarly, roots of a traditional medicinal plant, Eurycoma longifolia, can be used as an alternative treatment to prevent and treat the angiogenesis-related diseases. In the present study, antiangiogenic potential of partially purified quassinoid-rich fraction (TAF273) of E. longifolia root extract was evaluated using ex vivo and in vivo angiogenesis models and the anti-angiogenic efficacy of TAF273 was investigated in human umbilical vein endothelial cells (HUVEC). TAF273 caused significant suppression in sprouting of microvessels in rat aorta with IC50 11.5μg/ml. TAF273 (50μg/ml) showed remarkable inhibition (63.13%) of neovascularization in chorioallantoic membrane of chick embryo. Tumor histology also revealed marked reduction in extent of vascularization. In vitro, TAF273 significantly inhibited the major angiogenesis steps such as proliferation, migration and differentiation of HUVECs. Phytochemical analysis revealed high content of quassinoids in TAF273. Specially, HPLC characterization showed that TAF273 is enriched with eurycomanone, 13α(21)-epoxyeurycomanone and eurycomanol. These results demonstrated that the antiangiogenic activity of TAF273 may be due to its inhibitory effect on endothelial cell proliferation, differentiation and migration which could be attributed to the high content of quassinoids in E. longifolia.
Libyan Journal of Medicine | 2010
Muhammad Jameel Mohamed Kamil; Hamid Ali Nagi Al-Jamal; Narazah Mohd Yusoff
Objective: So far no studies have been performed in Malaysia to look at association of diabetes mellitus (DM) with blood groups. We studied the association of ABO blood groups with DM type 2. Patients and methodology: It was a case control study conducted at Kepala Batas Hospital Batas, Penang, Malaysia in the year 2009, involving 70 patients with DM type 2 and 140 healthy controls. Ethical approval was obtained from Universiti Sains Malaysia. Blood samples were collected from the patients after consent. Samples were tested for ABO blood groups using ID-Card gel method. Results: Chi-square test results showed that there was an association between the ABO blood groups and DM type 2. It was found that A and O blood groups were negatively associated with DM type 2 (P<0.05) with higher percentage of A and O groups individuals were non-diabetic. No significant association was noted between DM type 2 and blood groups B (P=0.423) and AB (P=0.095). It was also noted that B blood group was distributed with highest percentage among patients with DM type 2 (53.71%) compared to controls (22.52%), but no statistical significance achieved. Conclusion: The results obtained suggest that there was a negative association between ABO blood groups A and O with DM type 2, with A and O group having less chances of diabetes. Large studies in other ethnic groups are needed to confirm these results.
Pediatrics International | 2004
Retno Sutomo; Norlelawati A.Talib; Narazah Mohd Yusoff; Hans Van Rostenberghe; Ahmad Hamim Sadewa; Sunarti; Abdul Salam M. Sofro; Naoki Yokoyama; Myeong Jin Lee; Masafumi Matsuo; Hisahide Nishio
Abstract Background : There are significant differences in the prevalence and severity of neonatal jaundice among various populations. Recently, it has been reported that a mutation of the UGT1A1 gene, glycine to arginine at codon 71 (G71R), is related to the development of neonatal jaundice in East Asian populations. However, whether the G71R mutation contributes to the high incidence of neonatal jaundice in different Asian populations remains unknown. The authors screened for this mutation in the Javanese‐Indonesian and Malay‐Malaysian populations.
Frontiers in Oncology | 2017
Norashikin Zakaria; Nazilah Abdul Satar; Noor Hanis Abu Halim; Siti Hawa Ngalim; Narazah Mohd Yusoff; Juntang Lin; Badrul Hisham Yahaya
Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs) because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.
Pediatric Research | 2010
Surini Yusoff; Atsuko Takeuchi; Chitose Ashi; Masako Tsukada; Nur H Ma'Amor; Bin Alwi Zilfalil; Narazah Mohd Yusoff; Tsutomu Nakamura; Midori Hirai; Indra Sari Kusuma Harahap; Myeong Jin Lee; Noriyuki Nishimura; Yutaka Takaoka; Satoru Morikawa; Ichiro Morioka; Naoki Yokoyama; Masafumi Matsuo; Hisahide Nishio; Hans Van Rostenberghe
The uridine diphosphoglucuronate-glucuronosyltransferase 1A1 (UGT1A1) gene encodes the enzyme responsible for bilirubin glucuronidation. To evaluate the contribution of UGT1A1 promoter mutations to neonatal jaundice, we determined the genotypes of c.-3279T>G, c.-3156G>A, and A(TA)7TAA in Malay infants with neonatal jaundice (patients) and in infants without neonatal jaundice (controls). In our population study, only c.-3279T>G was associated with neonatal jaundice. The genotype distributions between both groups were significantly different (p = 0.003): the frequency of homozygosity for c.-3279G was much higher in patients than those in controls. Allele frequency of c.-3279G was significantly higher in patients than those in controls (p = 0.006). We then investigated changes in transcriptional activity because of c.-3279T>G. Luciferase reporter assay in HepG2 cells demonstrated that transcriptional activity of the c.-3279G allele was significantly lower than that of the c.-3279T allele in both the absence and presence of bilirubin. Luciferase reporter assay in COS-7 cells elucidated that c.-3279T>G modified the synergistic effects of the nuclear factors associated with transcriptional machinery. In conclusion, the c.-3279T>G mutation in the UGT1A1 promoter is a genetic risk factor for neonatal jaundice.
Pediatrics International | 2005
Salamatu Jalloh; Hans Van Rostenberghe; Narazah Mohd Yusoff; Selamah Ghazali; Nik Zainal Abidin Nik Ismail; Masafumi Matsuo; Nor Akmal Wahab; Hisahide Nishio
Abstract Background : The role of hemolysis in the pathophysiology of neonatal jaundice (NNJ) in patients with glucose 6‐phosphate dehydrogenase (G6PD) deficiency has been questioned recently. The aim of the present study was to determine the contribution of hemolysis to the pathophysiology of jaundice in Malay neonates with G6PD deficiency and NNJ.
PLOS Neglected Tropical Diseases | 2014
Abdullah Ahmed Al-alimi; Syed A. Ali; Faisal Muti Al-Hassan; Fauziah Mohd Idris; Sin-Yeang Teow; Narazah Mohd Yusoff
Background Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals. Methodology Monocytes from G6PD-deficient individuals were infected with DENV2 and infection rate, levels of oxidative species, nitric oxide (NO), superoxide anions (O2 −), and oxidative stress were determined and compared with normal controls. Principal Findings Monocytes from G6PD-deficient individuals exhibited significantly higher infection rates compared to normal controls. In an effort to explain the reason for this enhanced susceptibility, we investigated the production of NO and O2 − in the monocytes of individuals with G6PD deficiency compared with normal controls. We found that levels of NO and O2 − were significantly lower in the DENV-infected monocytes from G6PD-deficient individuals compared with normal controls. Furthermore, the overall oxidative stress in DENV-infected monocytes from G6PD-deficient individuals was significantly higher when compared to normal controls. Correlation studies between DENV-infected cells and oxidative state of monocytes further confirmed these findings. Conclusions/Significance Altered redox state of DENV-infected monocytes from G6PD-deficient individuals appears to augment viral replication in these cells. DENV-infected G6PD-deficient individuals may contain higher viral titers, which may be significant in enhanced virus transmission. Furthermore, granulocyte dysfunction and higher viral loads in G6PD-deificient individuals may result in severe form of dengue infection.