Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Narender S. Maan is active.

Publication


Featured researches published by Narender S. Maan.


Emerging Infectious Diseases | 2011

Novel Bluetongue Virus Serotype from Kuwait

Sushila Maan; Narender S. Maan; Kyriaki Nomikou; Carrie Batten; Frank Antony; Manjunatha N. Belaganahalli; Attia Mohamed Samy; Ammar Abdel Reda; Sana Ahmed Al-Rashid; Maha El Batel; C.A.L. Oura; Peter P. C. Mertens

Sheep and goats sampled in Kuwait during February 2010 were seropositive for bluetongue virus (BTV). BTV isolate KUW2010/02, from 1 of only 2 sheep that also tested positive for BTV by real-time reverse transcription–PCR, caused mild clinical signs in sheep. Nucleotide sequencing identified KUW2010/02 as a novel BTV serotype.


PLOS Pathogens | 2008

Transmission Pathways of Foot-and-Mouth Disease Virus in the United Kingdom in 2007

Eleanor M. Cottam; Jemma Wadsworth; Andrew E. Shaw; Rebecca J. Rowlands; Lynnette Goatley; Sushila Maan; Narender S. Maan; Peter P. C. Mertens; Katja Ebert; Yanmin Li; Eoin Ryan; Nicholas Juleff; Nigel P. Ferris; John Wilesmith; Daniel T. Haydon; Donald P. King; David J. Paton; Nick J. Knowles

Foot-and-mouth disease (FMD) virus causes an acute vesicular disease of domesticated and wild ruminants and pigs. Identifying sources of FMD outbreaks is often confounded by incomplete epidemiological evidence and the numerous routes by which virus can spread (movements of infected animals or their products, contaminated persons, objects, and aerosols). Here, we show that the outbreaks of FMD in the United Kingdom in August 2007 were caused by a derivative of FMDV O1 BFS 1860, a virus strain handled at two FMD laboratories located on a single site at Pirbright in Surrey. Genetic analysis of complete viral genomes generated in real-time reveals a probable chain of transmission events, predicting undisclosed infected premises, and connecting the second cluster of outbreaks in September to those in August. Complete genome sequence analysis of FMD viruses conducted in real-time have identified the initial and intermediate sources of these outbreaks and demonstrate the value of such techniques in providing information useful to contemporary disease control programmes.


PLOS ONE | 2011

Complete Genome Characterisation of a Novel 26th Bluetongue Virus Serotype from Kuwait

Sushila Maan; Narender S. Maan; Kyriaki Nomikou; Eva Veronesi; Katarzyna Bachanek-Bankowska; Manjunatha N. Belaganahalli; Houssam Attoui; Peter P. C. Mertens

Bluetongue virus is the “type” species of the genus Orbivirus, family Reoviridae. Twenty four distinct bluetongue virus (BTV) serotypes have been recognized for decades, any of which is thought to be capable of causing “bluetongue” (BT), an insect-borne disease of ruminants. However, two further BTV serotypes, BTV-25 (Toggenburg orbivirus, from Switzerland) and BTV-26 (from Kuwait) have recently been identified in goats and sheep, respectively. The BTV genome is composed of ten segments of linear dsRNA, encoding 7 virus-structural proteins (VP1 to VP7) and four distinct non-structural (NS) proteins (NS1 to NS4). We report the entire BTV-26 genome sequence (isolate KUW2010/02) and comparisons to other orbiviruses. Highest identity levels were consistently detected with other BTV strains, identifying KUW2010/02 as BTV. The outer-core protein and major BTV serogroup-specific antigen “VP7” showed 98% aa sequence identity with BTV-25, indicating a common ancestry. However, higher level of variation in the nucleotide sequence of Seg-7 (81.2% identity) suggests strong conservation pressures on the protein of these two strains, and that they diverged a long time ago. Comparisons of Seg-2, encoding major outer-capsid component and cell-attachment protein “VP2” identified KUW2010/02 as 26th BTV, within a 12th Seg-2 nucleotype [nucleotype L]. Comparisons of Seg-6, encoding the smaller outer capsid protein VP5, also showed levels of nt/aa variation consistent with identification of KUW2010/02 as BTV-26 (within a 9th Seg-6 nucleotype - nucleotype I). Sequence data for Seg-2 of KUW2010/02 were used to design four sets of oligonucleotide primers for use in BTV-26, type-specific RT-PCR assays. Analyses of other more conserved genome segments placed KUW2010/02 and BTV-25/SWI2008/01 closer to each other than to other “eastern” or “western” BTV strains, but as representatives of two novel and distinct geographic groups (topotypes). Our analyses indicate that all of the BTV genome segments have evolved under strong purifying selection.


PLOS ONE | 2012

Identification and differentiation of the twenty six bluetongue virus serotypes by RT-PCR amplification of the serotype-specific genome segment 2.

Narender S. Maan; Sushila Maan; Manjunatha N. Belaganahalli; Eileen N. Ostlund; Donna J. Johnson; Kyriaki Nomikou; Peter P. C. Mertens

Bluetongue (BT) is an arthropod-borne viral disease, which primarily affects ruminants in tropical and temperate regions of the world. Twenty six bluetongue virus (BTV) serotypes have been recognised worldwide, including nine from Europe and fifteen in the United States. Identification of BTV serotype is important for vaccination programmes and for BTV epidemiology studies. Traditional typing methods (virus isolation and serum or virus neutralisation tests (SNT or VNT)) are slow (taking weeks, depend on availability of reference virus-strains or antisera) and can be inconclusive. Nucleotide sequence analyses and phylogenetic comparisons of genome segment 2 (Seg-2) encoding BTV outer-capsid protein VP2 (the primary determinant of virus serotype) were completed for reference strains of BTV-1 to 26, as well as multiple additional isolates from different geographic and temporal origins. The resulting Seg-2 database has been used to develop rapid (within 24 h) and reliable RT–PCR-based typing assays for each BTV type. Multiple primer-pairs (at least three designed for each serotype) were widely tested, providing an initial identification of serotype by amplification of a cDNA product of the expected size. Serotype was confirmed by sequencing of the cDNA amplicons and phylogenetic comparisons to previously characterised reference strains. The results from RT-PCR and sequencing were in perfect agreement with VNT for reference strains of all 26 BTV serotypes, as well as the field isolates tested. The serotype-specific primers showed no cross-amplification with reference strains of the remaining 25 serotypes, or multiple other isolates of the more closely related heterologous BTV types. The primers and RT–PCR assays developed in this study provide a rapid, sensitive and reliable method for the identification and differentiation of the twenty-six BTV serotypes, and will be updated periodically to maintain their relevance to current BTV distribution and epidemiology (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/rt-pcr-primers.htm).


PLOS ONE | 2010

Full Genome Characterisation of Bluetongue Virus Serotype 6 from the Netherlands 2008 and Comparison to Other Field and Vaccine Strains

Sushila Maan; Narender S. Maan; Piet A. van Rijn; René G. P. van Gennip; Anna Sanders; Isabel M. Wright; Carrie Batten; Bernd Hoffmann; Michael Eschbaumer; C.A.L. Oura; Abraham C. Potgieter; Kyriaki Nomikou; Peter P. C. Mertens

In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment (Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH “dsRNA virus reference collection” [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences, one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8 Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8. Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and BTV-8 entered northern Europe was not established.


PLOS ONE | 2010

RT-PCR Assays for Seven Serotypes of Epizootic Haemorrhagic Disease Virus & Their Use to Type Strains from the Mediterranean Region and North America

Narender S. Maan; Sushila Maan; Kyriaki Nomikou; Donna J. Johnson; Mehdi El Harrak; Hafsa Madani; Hagai Yadin; Serife Incoglu; Kadir Yeşilbağ; Andrew B. Allison; David E. Stallknecht; Carrie Batten; Simon J. Anthony; Peter P. C. Mertens

Epizootic haemorrhagic disease virus (EHDV) infects wild ruminants, causing a frequently fatal haemorrhagic disease. However, it can also cause bluetongue-like disease in cattle, involving significant levels of morbidity and mortality, highlighting a need for more rapid and reliable diagnostic assays. EHDV outer-capsid protein VP2 (encoded by genome-segment 2 [Seg-2]) is highly variable and represents the primary target for neutralising antibodies generated by the mammalian host. Consequently VP2 is also the primary determinant of virus “serotype”, as identified in virus neutralisation tests (VNT). Although previous reports have indicated eight to ten EHDV serotypes, recent serological comparisons and molecular analyses of Seg-2 indicate only seven EHDV “types”. Oligonucleotide primers were developed targeting Seg-2, for use in conventional RT-PCR assays to detect and identify these seven types. These assays, which are more rapid and sensitive, still show complete agreement with VNT and were used to identify recent EHDV isolates from the Mediterranean region and North America.


PLOS ONE | 2009

Evolution and Phylogenetic Analysis of Full-Length VP3 Genes of Eastern Mediterranean Bluetongue Virus Isolates

Kyriaki Nomikou; Chrysostomos Ι. Dovas; Sushila Maan; Simon J. Anthony; Alan R. Samuel; Maria Papanastassopoulou; Narender S. Maan; Olga Mangana; Peter P. C. Mertens

Bluetongue virus (BTV) is the ‘type’ species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979–2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an ‘eastern’ (BTV-9, -16 and -1) and a ‘western’ (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe.


PLOS ONE | 2015

Full-Genome Sequencing as a Basis for Molecular Epidemiology Studies of Bluetongue Virus in India.

Sushila Maan; Narender S. Maan; Manjunatha N. Belaganahalli; P P Rao; Karam Pal Singh; D. Hemadri; Kalyani Putty; Aman Kumar; Kanisht Batra; Yadlapati Krishnajyothi; Bharat S. Chandel; G. Hanmanth Reddy; Kyriaki Nomikou; Yella Narasimha Reddy; Houssam Attoui; Nagendra R. Hegde; Peter P. C. Mertens

Since 1998 there have been significant changes in the global distribution of bluetongue virus (BTV). Ten previously exotic BTV serotypes have been detected in Europe, causing severe disease outbreaks in naïve ruminant populations. Previously exotic BTV serotypes were also identified in the USA, Israel, Australia and India. BTV is transmitted by biting midges (Culicoides spp.) and changes in the distribution of vector species, climate change, increased international travel and trade are thought to have contributed to these events. Thirteen BTV serotypes have been isolated in India since first reports of the disease in the country during 1964. Efficient methods for preparation of viral dsRNA and cDNA synthesis, have facilitated full-genome sequencing of BTV strains from the region. These studies introduce a new approach for BTV characterization, based on full-genome sequencing and phylogenetic analyses, facilitating the identification of BTV serotype, topotype and reassortant strains. Phylogenetic analyses show that most of the equivalent genome-segments of Indian BTV strains are closely related, clustering within a major eastern BTV ‘topotype’. However, genome-segment 5 (Seg-5) encoding NS1, from multiple post 1982 Indian isolates, originated from a western BTV topotype. All ten genome-segments of BTV-2 isolates (IND2003/01, IND2003/02 and IND2003/03) are closely related (>99% identity) to a South African BTV-2 vaccine-strain (western topotype). Similarly BTV-10 isolates (IND2003/06; IND2005/04) show >99% identity in all genome segments, to the prototype BTV-10 (CA-8) strain from the USA. These data suggest repeated introductions of western BTV field and/or vaccine-strains into India, potentially linked to animal or vector-insect movements, or unauthorised use of ‘live’ South African or American BTV-vaccines in the country. The data presented will help improve nucleic acid based diagnostics for Indian serotypes/topotypes, as part of control strategies.


PLOS ONE | 2011

Umatilla Virus Genome Sequencing and Phylogenetic Analysis: Identification of Stretch Lagoon Orbivirus as a New Member of the Umatilla virus Species

Manjunatha N. Belaganahalli; Sushila Maan; Narender S. Maan; Robert B. Tesh; Houssam Attoui; Peter P. C. Mertens

The genus Orbivirus, family Reoviridae, includes 22 species of viruses with genomes composed of ten segments of linear dsRNA that are transmitted between their vertebrate hosts by insects or ticks, or with no identified vectors. Full-genome sequence data are available for representative isolates of the insect borne mammalian orbiviruses (including bluetongue virus), as well as a tick borne avian orbivirus (Great Island virus). However, no sequence data are as yet available for the mosquito borne avian orbiviruses. We report full-length, whole-genome sequence data for Umatilla virus (UMAV), a mosquito borne avian orbivirus from the USA, which belongs to the species Umatilla virus. Comparisons of conserved genome segments 1, 2 and 8 (Seg-1, Seg-2 and Seg-8) - encoding the polymerase-VP1, sub-core ‘T2’ protein and core-surface ‘T13’ protein, respectively, show that UMAV groups with the mosquito transmitted mammalian orbiviruses. The highest levels of sequence identity were detected between UMAV and Stretch Lagoon orbivirus (SLOV) from Australia, showing that they belong to the same virus species (with nt/aa identity of 76.04%/88.07% and 77.96%/95.36% in the polymerase and T2 genes and protein, respectively). The data presented here has assisted in identifying the SLOV as a member of the Umatilla serogroup. This sequence data reported here will also facilitate identification of new isolates, and epidemiological studies of viruses belonging to the species Umatilla virus.


Virus Research | 2009

Genetic and phylogenetic analysis of the core proteins VP1, VP3, VP4, VP6 and VP7 of epizootic haemorrhagic disease virus (EHDV)

S.J. Anthony; Narender S. Maan; Sushila Maan; Geoff Sutton; Houssam Attoui; Peter P. C. Mertens

The core proteins of epizootic haemorrhagic disease virus (EHDV) have important roles to perform in maintaining the structure and function of the virus. A complete genetic and phylogenetic analysis was therefore performed on these proteins (and the genes that code for them) to allow comparison of the selective pressures acting on each. Accession numbers, gene and protein sizes, ORF positions, G+C contents, terminal hexanucleotides, start and stop codons and phylogenetic relationships are all presented. The inner core proteins (VP1, VP3, VP4 and VP6) were characterised by high levels of sequence conservation, and the ability to topotype isolates very strongly into eastern or western groups. This is particularly evident in genome segment 9 (VP6) which exists as two different sized homologues. VP7 did not topotype, but rather exhibited a more random, radial phylogeny suggestive of genetic drift. With the exception of VP6, all of the core proteins also showed high numbers of synonymous mutations in the third base position, suggesting they have been evolving for a long period of time. Interestingly, VP6 did not show this, and possible reasons for this are discussed.

Collaboration


Dive into the Narender S. Maan's collaboration.

Top Co-Authors

Avatar

Sushila Maan

Lala Lajpat Rai University of Veterinary and Animal Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyriaki Nomikou

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanisht Batra

University of Veterinary and Animal Sciences

View shared research outputs
Top Co-Authors

Avatar

Aman Kumar

University of Veterinary and Animal Sciences

View shared research outputs
Top Co-Authors

Avatar

Karam Pal Singh

Indian Veterinary Research Institute

View shared research outputs
Top Co-Authors

Avatar

Houssam Attoui

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Carrie Batten

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Sushila Maan

Lala Lajpat Rai University of Veterinary and Animal Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge