Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naresh Kasoju is active.

Publication


Featured researches published by Naresh Kasoju.


Biomacromolecules | 2008

Fluorescence Study of the Curcumin-Casein Micelle Complexation and Its Application as a Drug Nanocarrier to Cancer Cells

Abhishek Sahu; Naresh Kasoju; Utpal Bora

In milk caseins exists a natural nanostructure, which can be exploited as a carrier of hydrophobic drugs. Here we investigated the complex formation of curcumin with bovine casein micelles (CMs) and its use as a vehicle for drug delivery to cancer cells. DLS studies of the CM suspension that was stable in buffer solution (pH 7.4) showed an average size distribution of <200 nm. SEM and AFM studies showed that the particles were roughly spherical in shape. Steady-state fluorescence spectroscopy of the CM-curcumin complex formation revealed that curcumin molecules formed complexes with CMs (CM-curcumin complex) through hydrophobic interactions. The binding constant for the CM-curcumin interaction was calculated to be 1.48 x 10(4) M(-1), as determined by the curcumin fluorescence. Fluorescence quenching showed that curcumin molecules quench the intrinsic fluorescence of caseins upon binding. We evaluated the utility of CMs as carriers of curcumin by using in vitro cultured HeLa cells. Cytotoxicity studies of HeLa cells revealed that the IC50 of free curcumin and the CM-curcumin complex was 14.85 and 12.69 microM, respectively.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells

Ratul Kumar Das; Naresh Kasoju; Utpal Bora

UNLABELLED We report a nanoformulation of curcumin with a tripolymeric composite for delivery to cancer cells. The composite nanoparticles (NPs) were prepared by using three biocompatible polymers-alginate (ALG), chitosan (CS), and pluronic-by ionotropic pre-gelation followed by polycationic cross-linking. Pluronic F127 was used to enhance the solubility of curcumin in the ALG-CS NPs. Atomic force and scanning electron microscopic analysis showed that the particles were nearly spherical in shape with an average size of 100 +/- 20 nm. Fourier transform-infrared analysis revealed potential interactions among the constituents in the composite NPs. Encapsulation efficiency (%) of curcumin in composite NPs showed considerable increase over ALG-CS NPs without pluronic. The in vitro drug release profile along with release kinetics and mechanism from the composite NPs were studied under simulated physiological conditions for different incubation periods. A cytotoxicity assay showed that composite NPs at a concentration of 500 microg/mL were nontoxic to HeLa cells. Cellular internalization of curcumin-loaded composite NPs was confirmed from green fluorescence inside the HeLa cells. The half-maximal inhibitory concentrations for free curcumin and encapsulated curcumin were found to be 13.28 and 14.34 muM, respectively. FROM THE CLINICAL EDITOR A nanoformulation of curcumin with a tri-component polymeric composite for delivery to cancer cells is reported in this paper. Cellular internalization of curcumin loaded composite nanoparticles was confirmed from green fluorescence inside the HeLa cells.


Acta Biomaterialia | 2008

Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells.

Abhishek Sahu; Utpal Bora; Naresh Kasoju; Pranab Goswami

A novel polymeric amphiphile, mPEG-PA, was synthesized with methoxy poly(ethylene glycol) (mPEG) as the hydrophilic and palmitic acid (PA) as the hydrophobic segment. The conjugate prepared in a single-step reaction showed minimal toxicity on HeLa cells. (1)H nuclear magnetic resonance imaging and Fourier transform infrared spectroscopy revealed that the conjugation was through an ester linkage, which is biodegradable. Enzymes having esterase activity, such as lipase, can degrade the conjugate easily, as observed by in vitro studies. mPEG-PA conjugate undergoes self-assembly in an aqueous environment, as evidenced by fluorescence spectroscopic studies with pyrene as a probe. The mPEG-PA conjugate formed micelles in the aqueous solution with critical micelle concentration of 0.12 g l(-1). Atomic force microscopy and dynamic light scattering studies showed that the micelles were spherical in shape, with a mean diameter of 41.43 nm. The utility of mPEG-PA to entrap the potent chemopreventive agent curcumin in the core of nanocarrier was investigated. The encapsulation of a highly hydrophobic compound like curcumin in the nanocarrier makes the drug readily soluble in an aqueous system, which can increase the ease of dosing and makes intravenous dosing possible. Drug-loaded micelle nanoparticles showed good stability in physiological condition (pH 7.4), in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 6.8). This micellar formulation can be used as an enzyme-triggered drug release carrier, as suggested by in vitro enzyme-catalyzed drug release using pure lipase and HeLa cell lysate. The IC(50) of free curcumin and encapsulated curcumin was found to be 14.32 and 15.58 microM, respectively.


Advanced Healthcare Materials | 2012

Silk fibroin in tissue engineering.

Naresh Kasoju; Utpal Bora

Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field.


Journal of Biomaterials Applications | 2011

Encapsulation of Curcumin in Pluronic Block Copolymer Micelles for Drug Delivery Applications

Abhishek Sahu; Naresh Kasoju; Pranab Goswami; Utpal Bora

We report here the potential of Pluronic tri-block copolymer micelles for the formulation of curcumin, a natural dietary compound having great therapeutic potential against many diseases including cancer. Two most commonly used Pluronic F127 and F68 were used for the formulation and analyzed for curcumin encapsulation efficiency and stability. The encapsulation of drug in micelle was highly dependent on drug-to-copolymer ratio. Pluronic F127 showed better encapsulation efficiency than Pluronic F68. In vitro release profile demonstrated slower and sustained release of curcumin from Pluronic micelles. The lyophilized form of the formulations exhibited good stability for long-term storage. The physical interaction of curcumin with Pluronic was evident by XRD analysis, UV-visible, fluorescence, and FT-IR spectroscopy. AFM study showed that the drug-encapsulated micelles were spherical in shape with diameters below 100 nm. The in vitro cytotoxicity of the drug formulations was investigated with HeLa cancer cells. Pluronic-encapsulated curcumin showed comparable anticancer activity with free curcumin.


Journal of Biomedical Materials Research Part B | 2012

Fabrication and characterization of curcumin-releasing silk fibroin scaffold†‡

Naresh Kasoju; Utpal Bora

Here, we report the fabrication of a curcumin-releasing porous silk fibroin scaffold by simple mixing of fibroin solution (aqueous) with curcumin solution (organic) followed by freeze-thaw of the mixture. The scaffold has a uniform pore distribution with an average pore size of ~115 μm and a degree of swelling of 2.42% and water uptake capacity of 70.81%. Fibroin showed thermal stability up to ~280°C, whereas encapsulated curcumin disintegrated at ~180°C. Fourier transform infrared, powder X-ray diffraction, and nuclear magnetic resonance studies together with UV-visible and fluorescence spectroscopy investigations revealed the solvent (which was used to dissolve curcumin) induced conformational transition of fibroin from silk-I to silk-II that led to the formation of water-stable structure. Fluorescence spectroscopy data also suggested the presence of hydrophobic domains in fibroin and encapsulation of curcumin in such domains through hydrophobic interactions. Release kinetics and mathematical modeling studies indicated a slow and sustained release profile with diffusion as the predominant mode of release. Further, in vitro anticancer, antioxidant, and antimicrobial assays suggested that the biological activity of encapsulated curcumin remains unaltered. The fabrication process is simple, reproducible, and does not require any sophisticated instruments or toxic crosslinking agents. It is anticipated that the curcumin-loaded fibroin scaffold could be used in soft tissue replacements including localized postsurgical chemotherapy against tumors, dressing material for quick healing of wounds and burns, and other related applications.


Journal of Tissue Engineering and Regenerative Medicine | 2009

Preparation and characterization of Antheraea assama silk fibroin based novel non‐woven scaffold for tissue engineering applications

Naresh Kasoju; Ramesh Bhonde; Utpal Bora

The quest for novel materials as scaffolds with suitable micro‐architecture for supporting tissue neogenesis in tissue engineering and regenerative medicine (TERM) is continuing. In this paper we report an Antheraea assama silk‐based non‐woven fibroin scaffold for applications in TERM. The novel three‐dimensional scaffold is highly interconnected and porous, with a pore size of 150 µm, porosity of 90% and water uptake capacity of 85%. FTIR revealed a typical β‐sheet structure of fibroin. The scaffold has thermal and mechanical properties superior to those of Bombyx mori, as revealed by DSC, TGA and tensile tests. The scaffold exhibited satisfactory blood compatibility, as determined by thrombogenicity, haemolysis, platelet/leukocyte count, platelet adhesion and protein adsorption studies. The scaffold was found to be cytocompatible with human cell lines A549, KB, HepG2 and HeLa for a period of up to 4 weeks. SEM analysis revealed excellent attachment, spreading and migration of cells in the scaffold. MTT assay was performed to estimate the viability and growth of cells in the matrix. Quantification of collagen in cell–scaffold constructs was done by picro‐Sirius red assay. Ex ovo chorioallantoic membrane assay and nitric oxide estimations in spent culture medium showed the scaffolds ability to promote angiogenesis. Finally, the biodegradability of the scaffold was determined by the weight loss observed upon treatment with trypsin over a period of 4 weeks. The results reveal that the fibroin from A. assama is a promising candidate as a biocompatible, biomimetic and biodegradable biomaterial of natural origin for applications in TERM. Copyright


Bioresource Technology | 2010

Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam.

Seema Patel; Naresh Kasoju; Utpal Bora; Arun Goyal

Dextran produced by a natural isolate of Pediococcus pentosaceus, screened from Assam, in the Northeastern region of India, was estimated, purified, structure characterised and functionality analysed. The dextran concentration in the cell free supernatant of the isolate P. pentosaceus was 10.2mg/ml. FT-IR analysis revealed the hydroxyl and carboxyl functional groups present in the dextran. (1)H NMR and (13)C NMR spectral data revealed that the dextran has a linear backbone of alpha-(1-->6) linked D-glucose residues. The decrease in viscosity of dextran solution with the increase in shear rate, threw light on its typical non-Newtonian pseudoplastic behaviour. The cytotoxicity tests on human cervical cancer (HeLa) cell line was studied which showed the dextran is non-toxic and biocompatible, rendering it safe for drug delivery, tissue engineering and various other biomedical applications.


Biomedical Materials | 2012

Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications

Naresh Kasoju; Utpal Bora

Hepatic tissue engineering, which aims to construct artificial liver tissues, requires a suitable extracellular matrix (ECM) for growth and proliferation of metabolically active hepatocytes. The current paper describes the development of a biomimetic artificial ECM, for hepatic tissue engineering applications, by mimicking the architectural features and biochemical composition of native ECM. Electrospinning was chosen as the fabrication technique of choice, while regenerated silk fibroin (RSF) and galactosylated chitosan (GalCS) were chosen as materials of choice. Poly(ethylene oxide) was used as a processing aid. Methodical optimization studies were performed to obtain smooth and continuous nanofibers with homogenous size distribution. Extensive characterization studies were performed to determine its morphological, physical, chemical/structural, thermal and cytotoxicity properties. Subsequently, detailed in vitro hepatocyte compatibility studies were performed using HepG2 cell line. Remarkably, the studies revealed that the growth, viability, metabolic activity and proliferation of hepatocytes were relatively superior on RSF-GalCS scaffold than on pure RSF and pure GalCS. In summary, the electrospun nanofibrous RSF-GalCS scaffold tries to mimic both architectural and biochemical features of native ECM, and hence could be an appropriate scaffold for in vitro engineering of hepatic tissue. However, additional experiments are needed to confirm the superiority in characteristic functionality of hepatocytes growing on RSF-GalCS scaffold in relation to RSF and GalCS scaffolds, and to test its behavior in vivo.


PLOS ONE | 2014

Dip TIPS as a facile and versatile method for fabrication of polymer foams with controlled shape, size and pore architecture for bioengineering applications.

Naresh Kasoju; Dana Kubies; Marta M. Kumorek; Jan Kříž; Eva Fábryová; Ludka Machova; Jana Kovářová; František Rypáček

The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the “Dip TIPS” as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.

Collaboration


Dive into the Naresh Kasoju's collaboration.

Top Co-Authors

Avatar

Utpal Bora

Indian Institute of Technology Guwahati

View shared research outputs
Top Co-Authors

Avatar

Dana Kubies

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Marta M. Kumorek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Abhishek Sahu

Indian Institute of Technology Guwahati

View shared research outputs
Top Co-Authors

Avatar

František Rypáček

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Hua Ye

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pranab Goswami

Indian Institute of Technology Guwahati

View shared research outputs
Top Co-Authors

Avatar

Priyanka Srivastava

Indian Institute of Technology Guwahati

View shared research outputs
Researchain Logo
Decentralizing Knowledge