Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Narin Changklungmoa is active.

Publication


Featured researches published by Narin Changklungmoa.


Experimental Parasitology | 2013

Vaccine potential of recombinant cathepsin B against Fasciola gigantica.

Pathanin Chantree; Manussabhorn Phatsara; Krai Meemon; Pannigan Chaichanasak; Narin Changklungmoa; Pornanan Kueakhai; Natcha Lorsuwannarat; Kant Sangpairoj; Sineenart Songkoomkrong; Chaitip Wanichanon; Tadashi Itagaki; Prasert Sobhon

In Fasciola gigantica, cathepsin Bs, especially cathepsin B2 and B3 are expressed in early juvenile stages, and are proposed to mediate the invasion of host tissues. Thus they are thought to be the target vaccine candidates that can block the invasion and migration of the juvenile parasite. To evaluate their vaccine potential, the recombinant cathepsin B2 (rFgCatB2) and cathepsin B3 (rFgCatB3) were expressed in yeast, Pichia pastoris, and used to immunize mice in combination with Freunds adjuvant to evaluate the protection against the infection by F. gigantica metacercariae, and the induction of immune responses. Mice immunized with both recombinant proteins exhibited high percent of parasite reduction at 60% for rFgCatB2 and 66% for rFgCatB3. Immunization by both antigens induced continuously increasing levels of IgG1 and IgG2a with a higher level of IgG1 isotype, indicating the mixed Th1/Th2 responses with Th2 predominating. When examined individually, the higher levels of IgG1 and IgG2a were correlated with the lower numbers of worm recoveries. Thus, both cathepsin B2 and cathepsin B3 are plausible vaccine candidates whose potential should be further tested in large economic animals.


Acta Tropica | 2013

Molecular cloning, characterization and functional analysis of a novel juvenile-specific cathepsin L of Fasciola gigantica

Veerawat Sansri; Narin Changklungmoa; Pannigan Chaichanasak; Prasert Sobhon; Krai Meemon

Cathepsin L proteases are a major class of endopeptidases expressed at a high level in Fasciola parasites. Several isoforms of cathepsin L were detected and they may perform different functions during the parasite development. In this study, a complete cDNA encoding a cathepsin L protease was cloned from a newly excysted juvenile (NEJ) cDNA library of Fasciola gigantica and named FgCatL1H. It encoded a 326 amino acid preproenzyme which shared 62.8-83.1% and 39.5-42.9% identity to Fasciola spp. and mammalian cathepsins L, respectively. All functionally important residues previously described for cathepsin L were conserved in FgCatL1H. Phylogenetic analysis demonstrated that FgCatL1H belonged to a distinct group, clade 4, with respect to adult and other juvenile Fasciola cathepsin L genes. FgCatL1H expression was detected by RT-PCR, using gene specific primers, in metacercariae and NEJ, and the expression gradually decreased in advanced developmental stages. A recombinant proFgCatL1H (rproFgCatL1H) was expressed in the yeast Pichia pastoris, affinity purified, and found to migrate in SDS-PAGE at approximately 47.6 and 38.3kDa in glycosylated and deglycosylated forms, respectively. The molecular mass of the activated mature rFgCatL1H in glycosylated form was approximately 40.7kDa. Immunoblotting and immunohistochemistry using rabbit antibodies against rproFgCatL1H showed that FgCatL1H was predominantly expressed in epithelial cells of the digestive tract of metacercariae, NEJs and juveniles of F. gigantica. FgCatL1H could cleave the synthetic fluorogenic substrate Z-Phe-Arg-MCA preferentially over Z-Gly-Pro-Arg-MCA at an optimum pH of 6.5. It also showed hydrolytic activity against native substrates, including type I collagen, laminin, and immunoglobulin G (IgG) in vitro, suggesting possible roles in host tissue migration and immune evasion. Therefore, the FgCatL1H is a possible target for vaccine and chemotherapy for controlling F. gigantica infection.


Acta Tropica | 2013

Production and characterization of a monoclonal antibody against recombinant saposin-like protein 2 of Fasciola gigantica.

Pornanan Kueakhai; Narin Changklungmoa; Kulathida Chaithirayanon; Sineenart Songkoomkrong; Suda Riengrojpitak; Prasert Sobhon

A monoclonal antibody (MoAb) against recombinant Fasciola gigantica saposin-like protein 2 (rFgSAP-2) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with rFgSAP-2. This MoAb is an IgG1, κ light chain isotype. By immunoblotting and indirect ELISA, the MoAb reacted specifically with rFgSAP-2, the natural FgSAP-2 at 10kDa in whole body (WB) and excretory-secretory (ES) fractions of F. gigantica. It did not cross react with antigens in WB fractions from other parasites, including Opisthorchis viverrini, Schistosoma mansoni which are human parasites, Haemonchus placei, Setaria labiato-papillosa, Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gigantocotyle explanatum, Gastrothylax crumenifer, and Paramphistomum cervi which are ruminant parasites. By immunohistochemistry, the FgSAP-2 protein was localized only in the cytoplasm of caecal epithelial cells of 4-week-old juvenile and adult stages, but not in metacercariae, newly excysted juvenile (NEJ), 2- and 3-week-old juveniles. This finding indicated that FgSAP-2 is an abundantly expressed parasite protein that is released into the ES, hence SAP-2 and its MoAb may be used for immunodiagnosis of ruminant and human fasciolosis.


Experimental Parasitology | 2012

Molecular cloning and characterization of leucine aminopeptidase from Fasciola gigantica

Narin Changklungmoa; Kulathida Chaithirayanon; Pornanan Kueakhai; Krai Meemon; Suda Riengrojpitak; Prasert Sobhon

M17 leucine aminopeptidase (LAP) is one of a family of metalloexopeptidases, of which short peptide fragments are cleaved from the N-terminals. In this study, the full length of cDNA encoding Fasciola gigantica LAP (FgLAP) was cloned from adult parasites. The amino acid sequences of FgLAP showed a high degree of identity (98%) with that from Fasciola hepatica and a low degree of identities (11% and 9%) with those from cattle and human. Phylogenetic analysis revealed that the FgLAP was closely related and grouped with F. hepatica LAP (FhLAP). Northern analysis showed that FgLAP transcriptional products have 1800 base pairs. Analysis by RNA in situ hybridization indicated that LAP gene was expressed in the cecal epithelial cells of adult parasites. A polyclonal antibody to a recombinant FgLAP (rFgLAP) detected the native LAP protein in various developmental stages of the parasite. In a functional test, this rFgLAP displayed aminolytic activity using a fluorogenic Leu-MCA substrate, and was significantly inhibited by bestatin. Its maximum activity was at pH 8.0 and enhanced by Mn(2+) ions. Localization of LAP proteins by immunohistochemistry and immunofluorescence techniques indicated that the enzyme was distributed in the apical cytoplasm of cecal epithelial cells. Because of its important metabolic role and fairly exposed position, FgLAP is a potential drug target and a possible vaccine candidate against fasciolosis.


General and Comparative Endocrinology | 2013

The effects of serotonin, dopamine, gonadotropin-releasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii.

Tanapan Siangcham; Yotsawan Tinikul; Jaruwan Poljaroen; Morakot Sroyraya; Narin Changklungmoa; Ittipon Phoungpetchara; Wilairat Kankuan; Chanudporn Sumpownon; Chaitip Wanichanon; Peter J. Hanna; Prasert Sobhon

Neurotransmitters and neurohormones are agents that control gonad maturation in decapod crustaceans. Of these, serotonin (5-HT) and dopamine (DA) are neurotransmitters with known antagonist roles in female reproduction, whilst gonadotropin-releasing hormones (GnRHs) and corazonin (Crz) are neurohormones that exercise both positive and negative controls in some invertebrates. However, the effects of these agents on the androgenic gland (AG), which controls testicular maturation and male sex development in decapods, via insulin-like androgenic gland hormone (IAG), are unknown. Therefore, we set out to assay the effects of 5-HT, DA, l-GnRH-III, oct-GnRH and Crz, on the AG of small male Macrobrachium rosenbergii (Mr), using histological studies, a BrdU proliferative cell assay, immunofluorescence of Mr-IAG, and ELISA of Mr-IAG. The results showed stimulatory effects by 5-HT and l-GnRH-III through significant increases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). In contrast, DA and Crz caused inhibitory effects on the AG through significant decreases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). Moreover, the prawns treated with Crz died before day 16 of the experimental period. We propose that 5-HT and certain GnRHs can be now used to stimulate reproduction in male M. rosenbergii, as they induce increases in AG and testicular size, IAG production, and spermatogenesis. The mechanisms by which these occur are part of our on-going research.


Vaccine | 2015

Protection against Fasciola gigantica infection in mice by vaccination with recombinant juvenile-specific cathepsin L.

Veerawat Sansri; Krai Meemon; Narin Changklungmoa; Pornanan Kueakhai; Pathanin Chantree; Pannigan Chaichanasak; Natcha Lorsuwannarat; Tadashi Itagaki; Prasert Sobhon

Fasciola gigantica cathepsin L1H (FgCatL1H) is one of the major cathepsin L released by juveniles of F. gigantica to aid in the invasion of hosts tissues. Due to its high sequence similarity with other cathepsin L (CatL) isoforms of late stage F. gigantica, it was considered to be a good vaccine candidate that can block all CatL-mediated protease activities and affect juveniles as well as adult parasites. In this study, recombinant proFgCatL1H protein expressed in yeast, Pichia pastoris, system was mixed with Freunds adjuvants and used to subcutaneously immunize mice that were later challenged with metacercariae of F. gigantica. The percentage of worm protection in the rproFgCatL1H-vaccinated mice compared to the non-immunized and adjuvant control mice were approximately 62.7% and 66.1%, respectively. Anti-rproFgCatL1H antisera collected from vaccinated mice reacted specifically with rproFgCatL1H and other cathepsin L isoforms of F. gigantica, but the antibodies did not cross react with antigens from other trematode and nematode parasites, including Eurytrema pancreaticum, Opisthorchis viverrini, Fischoederius cobboldi, Cotylophoron cotylophorum, Gigantocotyle explanatum, Paramphistomum cervi, and Setaria labiato-papillosa. The levels of IgG1 and IgG2a in mouse sera increased significantly at two weeks after immunization and were highest during the sixth to eighth weeks after immunization. The IgG1 level was higher than IgG2a at all periods of immunization, implicating the dominance of the Th2 response. The levels of IgG1 and IgG2a in the immune sera were shown to be strongly correlated with the numbers of worm recovery, and the correlation coefficient was higher for IgG1. The levels of serum aspartate aminotransferase and alanine transaminase were significantly lower in the sera of rproFgCatL1H-vaccinated mice than in the infected control mice indicating a lower degree of liver damage. This study demonstrated a high potential of FgCatL1H vaccine, and its efficacy is currently being studied in the larger economic animals.


Experimental Parasitology | 2013

Paramphistomum cervi: the in vitro effect of plumbagin on motility, survival and tegument structure.

Naruwan Saowakon; Natcha Lorsuwannarat; Narin Changklungmoa; Chaitip Wanichanon; Prasert Sobhon

Paramphistomiasis causes enteritis and anemia in livestocks and result in substantial production and economic losses. It is considered a neglected tropical disease, with no effective trematodicidal compound for treatment. Plumbagin (PB), a compound founds to be rich in the roots of Plumbago indica, is a naphthoquinone derivatives which can induce oxidative stress in parasites. In this study we have evaluated the anthelmintic activity of PB against adult Paramphistomum cervi by incubating the parasites in M-199 medium containing 0.1, 1.0, 10 and 100 μg/ml of the PB, and albendazole (ABZ) at the concentration of 100 μg/ml as the positive control, for 3, 6, 12 and 24 h, using relative motility (RM) assay and observed by scanning electron microscopy (SEM). After 12 h exposure with 100 μg/ml ABZ, flukes showed decreased contraction and motility. At 24 h incubation they showed only active movement of some part of the body. The PB-treated flukes at all concentrations showed rapid decrease of motility at 3 h incubation. In 0.1, 1.0 and 10 μg/ml of PB, the RM values were decreased sharply from 3 to 12 h, and then they were killed since 12 h in the incubation with 10 μg/ml of PB. The highest parasite mortality was found as early as 3h when they were incubated with 100 μg/ml of PB. The morphological changes on the tegumental surface were similar in both flukes treated with ABZ and PB, which sequentially comprised of swelling, followed by blebbings that later ruptured, leading to the erosion and desquamation of the tegument syncytium. As the result, lesions were formed which exposed the basal lamina. The damage appeared more severe on the ventral than the dorsal surface, and earlier on the anterior part and lateral margins of middle third when compared to the posterior part of the parasitess bodies. The severity and rapidity of the damages were enhanced with increasing concentration of PB, which showed stronger activity than ABZ. Hence, PB has a potential to be an anthelmintic drug against adult P.cervi.


Acta Tropica | 2014

Production and characterization of a monoclonal antibody against recombinant cathepsin L1 of Fasciola gigantica

Panat Anuracpreeda; Thippawan Srirakam; Sudarat Pandonlan; Narin Changklungmoa; Charoonroj Chotwiwatthanakun; Yotsawan Tinikul; Jaruwan Poljaroen; Krai Meemon; Prasert Sobhon

Monoclonal antibodies (MoAbs) against a recombinant cathepsin L1 of Fasciola gigantica (rFgCatL1) were produced in vitro by fusion of BALB/c mice spleen cells immunized with rFgCatL1 and mouse myeloma cells. Reactivity and specificity of these MoAbs were evaluated by indirect ELISA and immunoblotting techniques. Seven MoAb clones were selected from the stable hybridoma clones, namely 1E10, 1F5, 3D11, 4B10, 4D3, 4E3 and 5E7. Clones 1E10, 1F5 and 3D11 were IgM, whereas clones 4B10, 4D3, 4E3 and 5E7 were IgG1. All MoAbs had kappa light chain isotypes. All MoAbs reacted with rCatL1 at molecular weight (MW) 30kDa and with the native CatL1 at MW 27kDa in whole body (WB) extracts of metacercariae (Met), newly excysted juveniles (NEJ), 1, 3, 5-week-old juveniles (Ju), adult WB and adult excretory-secretory (ES) fractions, but not with adult tegumental antigens (TA). All of these MoAbs showed no cross-reactions with antigens of other parasites commonly found in ruminants and human, including Paramphistomum cervi, Eurytrema pancreaticum, Gigantocotyle explanatum, Schistosoma spindale, Schistosoma mansoni, Moniezia benedeni, Avitellina centripunctata, Trichuris sp., Haemonchus placei and Setaria labiato-papillosa. Localization of CatL1 in each developmental stages of F. gigantica by immunoperoxidase technique, using these MoAbs as probes, indicated that CatL1 was present at high concentration in the caecal epithelium and caecal lumen of metacercariae, NEJ, 1, 3, 5-week-old juveniles and adult fluke. This finding indicated that CatL1 is a copiously expressed parasite protein that is released into the ES, thus CatL1 and its MoAb could be a good candidate for immunodiagnosis of fasciolosis in ruminant and human.


Microscopy Research and Technique | 2013

Expression of the male reproduction‐related gene in spermatic ducts of the blue swimming crab, Portunus pelagicus, and transfer of modified protein to the sperm acrosome

Morakot Sroyraya; Peter J. Hanna; Narin Changklungmoa; Thanyaporn Senarai; Tanapan Siangcham; Yotsawan Tinikul; Prasert Sobhon

Expression of a sex‐specific gene in Macrobrachium rosenbergii (Mr‐Mrr), encoding a male reproduction‐related (Mrr) protein, has been identified in the spermatic ducts (SDs) and postulated to be involved in sperm maturation processes. M. rosenbergii is the only decapod that the expression and fate of the Mrr protein has been studied. To determine that this protein was conserved in decapods, we firstly used cloning techniques to identify the Mrr gene in two crabs, Portunus pelagicus (Pp‐Mrr) and Scylla serrata (Ss‐Mrr). We then investigated expression of Pp‐Mrr by in situ hybridization, and immunolocalization, as well as phosphorylation and glycosylation modifications, and the fate of the protein in the male reproductive tract. Pp‐Mrr was shown to have 632 nucleotides, and a deduced protein of 110 amino acids, with an unmodified molecular weight of 11.79 kDa and a mature protein with molecular weight of 9.16 kDa. In situ hybridization showed that Pp‐Mrr is expressed in the epithelium of the proximal, middle, distal SDs, and ejaculatory ducts. In Western blotting, proteins of 10.9 and 17.2 kDa from SDs were all positive using anti‐Mrr, antiphosphoserine/threonine, and antiphosphotyrosine. PAS staining showed they were also glycosylated. Immunolocalization studies showed Pp‐Mrr in the SD epithelium, lumen, and on the acrosomes of spermatozoa. Immunofluorescence staining indicated the acrosome of spermatozoa contained the Mrr protein, which is phosphorylated with serine/threonine and tyrosine, and also glycosylated. The Mrr is likely to be involved in acrosomal activation during fertilization of eggs. Microsc. Res. Tech., 2013.


Veterinary Parasitology | 2016

Vaccine potential of recombinant cathepsinL1G against Fasciola gigantica in mice

Narin Changklungmoa; Natthacha Phoinok; Chonthicha Yencham; Prasert Sobhon; Pornanan Kueakhai

In this study, we characterized and investigated the vaccine potential of FgCatL1G against Fasciola gigantica infection in mice. Recombinant mature FgCatL1G (rmFgCatL1G) was expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rmFgCatL1G combined with Freunds adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The percents of protection of rmFgCatL1G vaccine were estimated to be 56.5% and 58.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immunoblot to react with the native FgCatL1s in the extract of all stages of parasites and rmFgCatL1H, recombinant pro - FgCatL1 (rpFgCatL1). By immunohistochemistry, the immune sera also reacted with FgCatL1s in the caecal epithelial cells of the parasites. The levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, were also increased with IgG1 predominating. The levels of serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in rmFgCatL1G-immunized group showed no significant difference from the control groups, but pathological lesions of livers in rmFgCatL1G-immunized group showed significant decrease when compared to the control groups. This study indicates that rmFgCatL1G has a vaccine potential against F. gigantica in mice, and this potential will be tested in larger livestock animals.

Collaboration


Dive into the Narin Changklungmoa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pannigan Chaichanasak

Mahanakorn University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge