Narisara Chantratita
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Narisara Chantratita.
Science | 2010
Simon R. Harris; Edward J. Feil; Matthew T. G. Holden; Michael A. Quail; Emma K. Nickerson; Narisara Chantratita; Susana Gardete; Ana Tavares; Nicholas P. J. Day; Jodi A. Lindsay; Jonathan D. Edgeworth; Hermínia de Lencastre; Julian Parkhill; Sharon J. Peacock; Stephen D. Bentley
MRSA, Close and Personal Methods for differentiating pathogen isolates are essential for understanding their evolution and spread, as well as for the formulation of effective clinical strategies. Current typing methods for bacterial pathogens focus on a limited set of characteristics providing data with limited resolving power. Harris et al. (p. 469) used a high-throughput genome sequencing approach to show that isolates of methicillin-resistant Staphylococcus aureus (MRSA) are precisely differentiated into a global geographic structure. The findings suggest that intercontinental transmission has occurred for nearly four decades. The method could also detect individual person-to-person transmission events of MRSA within a hospital environment. By tracing the microevolution of a pathogen, high-throughput genomics reveals person-to-person transmission events. Current methods for differentiating isolates of predominant lineages of pathogenic bacteria often do not provide sufficient resolution to define precise relationships. Here, we describe a high-throughput genomics approach that provides a high-resolution view of the epidemiology and microevolution of a dominant strain of methicillin-resistant Staphylococcus aureus (MRSA). This approach reveals the global geographic structure within the lineage, its intercontinental transmission through four decades, and the potential to trace person-to-person transmission within a hospital environment. The ability to interrogate and resolve bacterial populations is applicable to a range of infectious diseases, as well as microbial ecology.
Infection and Immunity | 2011
Mary N. Burtnick; Paul J. Brett; Sarah V. Harding; Sarah A. Ngugi; Wilson J. Ribot; Narisara Chantratita; Angelo Scorpio; Timothy S. Milne; Rachel E. Dean; David L. Fritz; Sharon J. Peacock; Prior Jl; Timothy P. Atkins; David DeShazer
ABSTRACT The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (Δhcp1 through Δhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD50s) for the Δhcp2 through Δhcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD50 for the Δhcp1 mutant was >103 bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the Δhcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Philip L. Felgner; Matthew A. Kayala; Adam Vigil; Chad Burk; Rie Nakajima-Sasaki; Jozelyn Pablo; Douglas M. Molina; Siddiqua Hirst; Janet S. W. Chew; Dongling Wang; Gladys Tan; Melanie Duffield; Ron Yang; Julien Neel; Narisara Chantratita; Greg Bancroft; Ganjana Lertmemongkolchai; D. Huw Davies; Pierre Baldi; Sharon J. Peacock; Richard W. Titball
Understanding the way in which the immune system responds to infection is central to the development of vaccines and many diagnostics. To provide insight into this area, we fabricated a protein microarray containing 1,205 Burkholderia pseudomallei proteins, probed it with 88 melioidosis patient sera, and identified 170 reactive antigens. This subset of antigens was printed on a smaller array and probed with a collection of 747 individual sera derived from 10 patient groups including melioidosis patients from Northeast Thailand and Singapore, patients with different infections, healthy individuals from the USA, and from endemic and nonendemic regions of Thailand. We identified 49 antigens that are significantly more reactive in melioidosis patients than healthy people and patients with other types of bacterial infections. We also identified 59 cross-reactive antigens that are equally reactive among all groups, including healthy controls from the USA. Using these results we were able to devise a test that can classify melioidosis positive and negative individuals with sensitivity and specificity of 95% and 83%, respectively, a significant improvement over currently available diagnostic assays. Half of the reactive antigens contained a predicted signal peptide sequence and were classified as outer membrane, surface structures or secreted molecules, and an additional 20% were associated with pathogenicity, adaptation or chaperones. These results show that microarrays allow a more comprehensive analysis of the immune response on an antigen-specific, patient-specific, and population-specific basis, can identify serodiagnostic antigens, and contribute to a more detailed understanding of immunogenicity to this pathogen.
PLOS Medicine | 2007
W. Joost Wiersinga; Catharina W. Wieland; Mark C. Dessing; Narisara Chantratita; Allen C. Cheng; Direk Limmathurotsakul; Wirongrong Chierakul; Masja Leendertse; Sandrine Florquin; Alex F. de Vos; Nicholas J. White; Arjen M. Dondorp; Nicholas P. J. Day; Sharon J. Peacock; Tom van der Poll
Background Toll-like receptors (TLRs) are essential in host defense against pathogens by virtue of their capacity to detect microbes and initiate the immune response. TLR2 is seen as the most important receptor for gram-positive bacteria, while TLR4 is regarded as the gram-negative TLR. Melioidosis is a severe infection caused by the gram-negative bacterium, Burkholderia pseudomallei, that is endemic in Southeast Asia. We aimed to characterize the expression and function of TLRs in septic melioidosis. Methods and Findings Patient studies: 34 patients with melioidosis demonstrated increased expression of CD14, TLR1, TLR2, and TLR4 on the cell surfaces of monocytes and granulocytes, and increased CD14, TLR1, TLR2, TLR4, LY96 (also known as MD-2), TLR5, and TLR10 mRNA levels in purified monocytes and granulocytes when compared with healthy controls. In vitro experiments: Whole-blood and alveolar macrophages obtained from TLR2 and TLR4 knockout (KO) mice were less responsive to B. pseudomallei in vitro, whereas in the reverse experiment, transfection of HEK293 cells with either TLR2 or TLR4 rendered these cells responsive to this bacterium. In addition, the lipopolysaccharide (LPS) of B. pseudomallei signals through TLR2 and not through TLR4. Mouse studies: Surprisingly, TLR4 KO mice were indistinguishable from wild-type mice with respect to bacterial outgrowth and survival in experimentally induced melioidosis. In contrast, TLR2 KO mice displayed a markedly improved host defenses as reflected by a strong survival advantage together with decreased bacterial loads, reduced lung inflammation, and less distant-organ injury. Conclusions Patients with melioidosis displayed an up-regulation of multiple TLRs in peripheral blood monocytes and granulocytes. Although both TLR2 and TLR4 contribute to cellular responsiveness to B. pseudomallei in vitro, TLR2 detects the LPS of B. pseudomallei, and only TLR2 impacts on the immune response of the intact host in vivo. Inhibition of TLR2 may be a novel treatment strategy in melioidosis.
Journal of Bacteriology | 2007
Narisara Chantratita; Vanaporn Wuthiekanun; Khaemaporn Boonbumrung; Rachaneeporn Tiyawisutsri; Mongkol Vesaratchavest; Direk Limmathurotsakul; Wirongrong Chierakul; Surasakdi Wongratanacheewin; Sasithorn Pukritiyakamee; Nicholas J. White; Nicholas P. J. Day; Sharon J. Peacock
Melioidosis is a notoriously protracted illness and is difficult to cure. We hypothesize that the causative organism, Burkholderia pseudomallei, undergoes a process of adaptation involving altered expression of surface determinants which facilitates persistence in vivo and that this is reflected by changes in colony morphology. A colony morphotyping scheme and typing algorithm were developed using clinical B. pseudomallei isolates. Morphotypes were divided into seven types (denoted I to VII). Type I gave rise to other morphotypes (most commonly type II or III) by a process of switching in response to environmental stress, including starvation, iron limitation, and growth at 42 degrees C. Switching was associated with complex shifts in phenotype, one of which (type I to type II) was associated with a marked increase in production of factors putatively associated with in vivo concealment. Isogenic types II and III, derived from type I, were examined using several experimental models. Switching between isogenic morphotypes occurred in a mouse model, where type II appeared to become adapted for persistence in a low-virulence state. Isogenic type II demonstrated a significant increase in intracellular replication fitness compared with parental type I after uptake by epithelial cells in vitro. Isogenic type III demonstrated a higher replication fitness following uptake by macrophages in vitro, which was associated with a switch to type II. Mixed B. pseudomallei morphologies were common in individual clinical specimens and were significantly more frequent in samples of blood, pus, and respiratory secretions than in urine and surface swabs. These findings have major implications for therapeutics and vaccine development.
PLOS ONE | 2010
Direk Limmathurotsakul; Kris M Jamsen; Arkhom Arayawichanont; Julie A. Simpson; Lisa J. White; Sue J. Lee; Vanaporn Wuthiekanun; Narisara Chantratita; Allen C. Cheng; Nicholas P. J. Day; Claudio Verzilli; Sharon J. Peacock
Background Culture remains the diagnostic gold standard for many bacterial infections, and the method against which other tests are often evaluated. Specificity of culture is 100% if the pathogenic organism is not found in healthy subjects, but the sensitivity of culture is more difficult to determine and may be low. Here, we apply Bayesian latent class models (LCMs) to data from patients with a single Gram-negative bacterial infection and define the true sensitivity of culture together with the impact of misclassification by culture on the reported accuracy of alternative diagnostic tests. Methods/Principal Findings Data from published studies describing the application of five diagnostic tests (culture and four serological tests) to a patient cohort with suspected melioidosis were re-analysed using several Bayesian LCMs. Sensitivities, specificities, and positive and negative predictive values (PPVs and NPVs) were calculated. Of 320 patients with suspected melioidosis, 119 (37%) had culture confirmed melioidosis. Using the final model (Bayesian LCM with conditional dependence between serological tests), the sensitivity of culture was estimated to be 60.2%. Prediction accuracy of the final model was assessed using a classification tool to grade patients according to the likelihood of melioidosis, which indicated that an estimated disease prevalence of 61.6% was credible. Estimates of sensitivities, specificities, PPVs and NPVs of four serological tests were significantly different from previously published values in which culture was used as the gold standard. Conclusions/Significance Culture has low sensitivity and low NPV for the diagnosis of melioidosis and is an imperfect gold standard against which to evaluate alternative tests. Models should be used to support the evaluation of diagnostic tests with an imperfect gold standard. It is likely that the poor sensitivity/specificity of culture is not specific for melioidosis, but rather a generic problem for many bacterial and fungal infections.
Journal of Clinical Microbiology | 2005
Bina Maharjan; Narisara Chantratita; Mongkol Vesaratchavest; Allen C. Cheng; Vanaporn Wuthiekanun; Wirongrong Chierakul; Wipada Chaowagul; Nicholas P. J. Day; Sharon J. Peacock
ABSTRACT Human melioidosis is associated with a high rate of recurrent disease, despite adequate antimicrobial treatment. Here, we define the rate of relapse versus the rate of reinfection in 116 patients with 123 episodes of recurrent melioidosis who were treated at Sappasithiprasong Hospital in Northeast Thailand between 1986 and 2005. Pulsed-field gel electrophoresis was performed on all isolates; isolates from primary and recurrent disease for a given patient different by one or more bands were examined by a sequence-based approach based on multilocus sequence typing. Overall, 92 episodes (75%) of recurrent disease were caused by the same strain (relapse) and 31 episodes (25%) were due to infection with a new strain (reinfection). The interval to recurrence differed between patients with relapse and reinfection; those with relapses had a median time to relapse of 228 days (range, 15 to 3,757 days; interquartile range [IQR], 99.5 to 608 days), while those with reinfection had a median time to reinfection of 823 days (range, 17 to 2,931 days; IQR, 453 to 1,211 days) (P = 0.0001). A total of 64 episodes (52%) occurred within 12 months of the primary infection. Relapse was responsible for 57 of 64 (89%) episodes of recurrent infection within the first year after primary disease, whereas relapse was responsible for 35 of 59 (59%) episodes after 1 year (P < 0.0001). Our data indicate that in this setting of endemicity, reinfection is responsible for one-quarter of recurrent cases. This finding has important implications for the clinical management of melioidosis patients and for antibiotic treatment studies that use recurrent disease as a marker for treatment failure.
PLOS Neglected Tropical Diseases | 2013
Siriphan Boonsilp; Janjira Thaipadungpanit; Premjit Amornchai; Vanaporn Wuthiekanun; Mark S. Bailey; Matthew T. G. Holden; Cuicai Zhang; Xiugao Jiang; Nobuo Koizumi; Kyle Taylor; Renee L. Galloway; Alex R. Hoffmaster; Scott B. Craig; Lee D. Smythe; Rudy A. Hartskeerl; Nicholas P. J. Day; Narisara Chantratita; Edward J. Feil; David M. Aanensen; Brian G. Spratt; Sharon J. Peacock
Background The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species. Methodology and Findings We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated. Conclusion The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Narisara Chantratita; Drew A. Rholl; Bernice Sim; Vanaporn Wuthiekanun; Direk Limmathurotsakul; Premjit Amornchai; Aunchalee Thanwisai; Hui Hoon Chua; Wen Fong Ooi; Matthew T. G. Holden; Nicholas P. J. Day; Patrick Tan; Herbert P. Schweizer; Sharon J. Peacock
Known mechanisms of resistance to β-lactam antibiotics include β-lactamase expression, altered drug target, decreased bacterial permeability, and increased drug efflux. Here, we describe a unique mechanism of β-lactam resistance in the biothreat organism Burkholderia pseudomallei (the cause of melioidosis), associated with treatment failure during prolonged ceftazidime therapy of natural infection. Detailed comparisons of the initial ceftazidime-susceptible infecting isolate and subsequent ceftazidime-resistant variants from six patients led us to identify a common, large-scale genomic loss involving a minimum of 49 genes in all six resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a penicillin-binding protein 3 (BPSS1219) present within the region of genomic loss. The clinical ceftazidime-resistant variants failed to grow using commonly used laboratory culture media, including commercial blood cultures, rendering the variants almost undetectable in the diagnostic laboratory. Melioidosis is notoriously difficult to cure and clinical treatment failure is common in patients treated with ceftazidime, the drug of first choice across most of Southeast Asia where the majority of cases are reported. The mechanism described here represents an explanation for ceftazidime treatment failure, and may be a frequent but undetected resistance event.
PLOS Neglected Tropical Diseases | 2014
Raymond L. Houghton; Dana E. Reed; Mark A. Hubbard; Michael J. Dillon; Hongjing Chen; Bart J. Currie; Mark Mayo; Derek S. Sarovich; Vanessa Theobald; Direk Limmathurotsakul; Gumphol Wongsuvan; Narisara Chantratita; Sharon J. Peacock; Alex R. Hoffmaster; Brea D. Duval; Paul J. Brett; Mary N. Burtnick; David P. AuCoin
Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the “gold standard” for the diagnosis of melioidosis; results can take 3–7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation.