Narly Golestani
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Narly Golestani.
NeuroImage | 2009
Gwenaëlle Douaud; Timothy E. J. Behrens; Cyril Poupon; Y. Cointepas; Saâd Jbabdi; Véronique Gaura; Narly Golestani; Pierre Krystkowiak; Christophe Verny; Philippe Damier; Anne-Catherine Bachoud-Lévi; Philippe Hantraye; Philippe Remy
Although Huntingtons disease is largely considered to be a subcortical disease, there is no clear consensus on whether all deep grey matter loss is a direct downstream consequence of the massive degeneration of the medium-size spiny neurons in the striatum. Our aim was to characterise in vivo such preferential degeneration by analysing various distinct diffusion imaging measures including mean diffusivity, anisotropy, fibre orientation (using the information of the principal diffusion direction) and white matter tractography. All results converged to demonstrate the selective degeneration of connections in subcortical grey and white matter, degeneration which was likely to originate with the death of the striatal medium-size spiny neurons. Indeed, we found a significant increase of MD and FA in all the subcortical grey matter structures involved in the cortico-striato-thalamo-cortical loops. The atypical striatal and pallidal increase of FA was concurrent to a decrease of the dispersion of the fibre orientation, unambiguously characterising a preferential loss of connections along specific radiating directions from these structures while some others are comparatively spared. Analysis of striatal and pallidal white matter tracts revealed that striato-pallidal projections were the most affected. The ability of DTI to uncover the impact of such neurodegenerative disease on some specific neuronal/axonal populations is a further step towards the future definition of a surrogate marker of this disease. Beyond Huntingtons disease, we prove here that diffusion imaging technique, associated to adequate methodological analyses, can provide insight into any neurodegenerative disorder for which some neuronal populations or connections are selectively targeted over others.
information processing in medical imaging | 2005
Muriel Perrin; Cyril Poupon; Y. Cointepas; B. Rieul; Narly Golestani; Christophe Pallier; Denis Rivière; André Constantinesco; D. Le Bihan; J.-F. Mangin
Most of the approaches dedicated to fiber tracking from diffusion-weighted MR data rely on a tensor model. However, the tensor model can only resolve a single fiber orientation within each imaging voxel. New emerging approaches have been proposed to obtain a better representation of the diffusion process occurring in fiber crossing. In this paper, we adapt a tracking algorithm to the q-ball representation, which results from a spherical Radon transform of high angular resolution data. This algorithm is based on a Monte-Carlo strategy, using regularized particle trajectories to sample the white matter geometry. The method is validated using a phantom of bundle crossing made up of haemodialysis fibers. The method is also applied to the detection of the auditory tract in three human subjects.
Neuropsychologia | 2006
Narly Golestani; F.-Xavier Alario; Sébastien Mériaux; Denis Le Bihan; Stanislas Dehaene; Christophe Pallier
We used fMRI to examine the functional correlates of syntactical processing in the first (L1) and second (L2) languages of non-proficient, late bilinguals. Subjects either covertly read words or produced sentences from them. Syntactical production during sentence production activated regions including left inferior frontal (LIFG) gyrus and the supplementary motor area in both languages. Analyses performed on the LIFG activation identified on a subject-by-subject basis revealed greater activation in L2 compared to L1 during sentence production and during word reading, consistent with previous work suggesting that greater cognitive effort may be subserved by less well-tuned neural representations that require greater neuronal activity. Remarkably, there was a greater separation in the LIFG activations in L1 versus L2 in less compared to more proficient bilinguals during syntax production, suggesting a functional reorganisation of regions involved in syntactical production as a function of syntactical proficiency.
European Radiology | 2007
S. Rodrigo; Catherine Oppenheim; Francine Chassoux; Narly Golestani; Y. Cointepas; Cyril Poupon; F. Semah; J.-F. Mangin; D. Le Bihan; Jean-François Meder
In temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS), ictal discharge spread to the frontal and insulo-perisylvian cortex is commonly observed. The implication of white matter pathways in this propagation has not been investigated. We compared diffusion tensor imaging (DTI) measurements along the uncinate fasciculus (UF), a major tract connecting the frontal and temporal lobes, in patients and controls. Ten right-handed patients referred for intractable TLE due to a right HS were investigated on a 1.5-T MR scanner including a DTI sequence. All patients had interictal fluorodeoxyglucose PET showing an ipsilateral temporal hypometabolism associated with insular and frontal or perisylvian hypometabolism. The controls consisted of ten right-handed healthy subjects. UF fiber tracking was performed, and its fractional anisotropy (FA) values were compared between patients and controls, separately for the right and left UF. The left-minus-right FA UF asymmetry index was computed to test for intergroup differences. Asymmetries were found in the control group with right-greater-than-left FA. This asymmetrical pattern was lost in the patient group. Right FA values were lower in patients with right HS versus controls. Although preliminary, these findings may be related to the preferential pathway of seizure spread from the mesial temporal lobe to frontal and insulo-perisylvian areas.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Maaike Vandermosten; Bart Boets; Heleen Luts; Hanne Poelmans; Narly Golestani; Jan Wouters; Pol Ghesquière
Developmental dyslexia is characterized by severe reading and spelling difficulties that are persistent and resistant to the usual didactic measures and remedial efforts. It is well established that a major cause of these problems lies in poorly specified representations of speech sounds. One hypothesis states that this phonological deficit results from a more fundamental deficit in auditory processing. Despite substantial research effort, the specific nature of these auditory problems remains debated. A first controversy concerns the speech specificity of the auditory processing problems: Can they be reduced to more basic auditory processing, or are they specific to the perception of speech sounds? A second topic of debate concerns the extent to which the auditory problems are specific to the processing of rapidly changing temporal information or whether they encompass a broader range of complex spectro-temporal processing. By applying a balanced design with stimuli that were adequately controlled for acoustic complexity, we show that adults with dyslexia are specifically impaired at categorizing speech and nonspeech sounds that differ in terms of rapidly changing acoustic cues (i.e., temporal cues), but that they perform adequately when categorizing steady-state speech and nonspeech sounds. Thus, we show that individuals with dyslexia have an auditory temporal processing deficit that is not speech-specific.
Brain and Language | 2009
Narly Golestani; Robert J. Zatorre
Perceptual training was employed to characterize individual differences in non-native speech sound learning. Fifty-nine adult English speakers were trained to distinguish the Hindi dental-retroflex contrast, as well as a tonal pitch contrast. Training resulted in overall group improvement in the ability to identify and to discriminate the phonetic and the tonal contrasts, but there were considerable individual differences in performance. A category boundary effect during the post-training discrimination of the Hindi but not of the tonal contrast suggests different learning mechanisms for these two stimulus types. Specifically, our results suggest that successful learning of the speech sounds involves the formation of a long-term memory category representation for the new speech sound.
American Journal of Neuroradiology | 2007
S. Rodrigo; Olivier Naggara; C. Oppenheim; Narly Golestani; Cyril Poupon; Y. Cointepas; J.-F. Mangin; D. Le Bihan; J.F. Méder
BACKGROUND AND PURPOSE: Our aim was to improve our understanding of the subinsular white matter microstructural asymmetries in healthy right-handed subjects. Structural brain asymmetries could be related to functional asymmetries such as hemisphere language dominance or handedness. Besides the known gray matter asymmetries, white matter asymmetries could also play a key role in the understanding of hemispheric specialization, notably that of language. MATERIALS AND METHODS: White matter asymmetries were studied by diffusion tensor imaging at 1.5T (41 diffusion-gradient directions; b-value set to 700 s/mm2; matrix, 1282; in-plane resolution, 1.875 × 1.875 mm; section thickness, 2.0 mm) and fiber tracking (BrainVISA software). The main white matter bundles passing through the subinsular area were segmented, and fractional anisotropy (FA) was measured along each of the segmented bundles. RESULTS: In line with published results, we found an asymmetry of the arcuate fasciculus and the subinsular white matter, namely left-greater-than-right FA in right-handed controls. Furthermore, by segmenting major tracts coursing through this region, we showed that the subinsular portions of the uncinate fasciculus (UF) and the inferior occipitofrontal fasciculus (IOF) contribute to this FA asymmetry. Those tracts have been reported to be likely implicated in the language network. CONCLUSION: Because the left hemisphere hosts language functions in most right-handers, the significant leftward asymmetry observed within the arcuate fasciculus, the subinsular part of the UF and IOF may be related to the hemispheric specialization for language.
The Journal of Neuroscience | 2011
Narly Golestani; Cathy J. Price; Sophie K. Scott
Are experts born with particular predispositions, or are they made through experience? We examined brain structure in expert phoneticians, individuals who are highly trained to analyze and transcribe speech. We found a positive correlation between the size of left pars opercularis and years of phonetic transcription training experience, illustrating how learning may affect brain structure. Phoneticians were also more likely to have multiple or split left transverse gyri in the auditory cortex than nonexpert controls, and the amount of phonetic transcription training did not predict auditory cortex morphology. The transverse gyri are thought to be established in utero; our results thus suggest that this gross morphological difference may have existed before the onset of phonetic training, and that its presence confers an advantage of sufficient magnitude to affect career choices. These results suggest complementary influences of domain-specific predispositions and experience-dependent brain malleability, influences that likely interact in determining not only how experience shapes the human brain but also why some individuals become engaged by certain fields of expertise.
Frontiers in Psychology | 2011
Alexis Hervais-Adelman; Barbara Moser-Mercer; Narly Golestani
In this review we will focus on delineating the neural substrates of the executive control of language in the bilingual brain, based on the existing neuroimaging, intracranial, transcranial magnetic stimulation, and neuropsychological evidence. We will also offer insights from ongoing brain-imaging studies into the development of expertise in multilingual language control. We will concentrate specifically on evidence regarding how the brain selects and controls languages for comprehension and production. This question has been addressed in a number of ways and using various tasks, including language switching during production or perception, translation, and interpretation. We will attempt to synthesize existing evidence in order to bring to light the neural substrates that are crucial to executive control of language.
Cerebral Cortex | 2014
Samuel Evans; Jeong S. Kyong; Stuart Rosen; Narly Golestani; Jane E. Warren; Carolyn McGettigan; Janaina Mourão-Miranda; Rjs Wise; Sophie K. Scott
An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400–2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486–2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local “searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processing.