Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naruya Saitou is active.

Publication


Featured researches published by Naruya Saitou.


Nature | 2004

DNA sequence and comparative analysis of chimpanzee chromosome 22

H. Watanabe; Asao Fujiyama; Masahira Hattori; Todd D. Taylor; Atsushi Toyoda; Yoko Kuroki; Hideki Noguchi; Alia BenKahla; Hans Lehrach; Ralf Sudbrak; Michael Kube; S. Taenzer; P. Galgoczy; Matthias Platzer; M. Scharfe; Gabriele Nordsiek; Helmut Blöcker; Ines Hellmann; Philipp Khaitovich; Svante Pääbo; Richard Reinhardt; H.-J. Zheng; Xianglin Zhang; Genfeng Zhu; B.-F. Wang; Gang Fu; Shuangxi Ren; Guoping Zhao; Zhu Chen; Yong Seok Lee

Human–chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.Human–chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.


Nature Genetics | 2006

A SNP in the ABCC11 gene is the determinant of human earwax type

Koh-ichiro Yoshiura; Akira Kinoshita; Takafumi Ishida; Aya Ninokata; Toshihisa Ishikawa; Tadashi Kaname; Makoto Bannai; Katsushi Tokunaga; Shunro Sonoda; Ryoichi Komaki; Makoto Ihara; Vladimir Saenko; Gabit Alipov; Ichiro Sekine; Kazuki Komatsu; Haruo Takahashi; Mitsuko Nakashima; Nadiya Sosonkina; Christophe K. Mapendano; Mohsen Ghadami; Masayo Nomura; Desheng Liang; Nobutomo Miwa; Dae-Kwang Kim; Ariuntuul Garidkhuu; Nagato Natsume; Tohru Ohta; Hiroaki Tomita; Akira Kaneko; Mihoko Kikuchi

Human earwax consists of wet and dry types. Dry earwax is frequent in East Asians, whereas wet earwax is common in other populations. Here we show that a SNP, 538G → A (rs17822931), in the ABCC11 gene is responsible for determination of earwax type. The AA genotype corresponds to dry earwax, and GA and GG to wet type. A 27-bp deletion in ABCC11 exon 29 was also found in a few individuals of Asian ancestry. A functional assay demonstrated that cells with allele A show a lower excretory activity for cGMP than those with allele G. The allele A frequency shows a north-south and east-west downward geographical gradient; worldwide, it is highest in Chinese and Koreans, and a common dry-type haplotype is retained among various ethnic populations. These suggest that the allele A arose in northeast Asia and thereafter spread through the world. The 538G → A SNP is the first example of DNA polymorphism determining a visible genetic trait.


Journal of Molecular Evolution | 1991

On the maximum likelihood method in molecular phylogenetics

Masami Hasegawa; Hirohisa Kishino; Naruya Saitou

SummaryThe efficiency of obtaining the correct tree by the maximum likelihood method (Felsenstein 1981) for inferring trees from DNA sequence data was compared with trees obtained by distance methods. It was shown that the maximum likelihood method is superior to distance methods in the efficiency particularly when the evolutionary rate differs among lineages.


Journal of Molecular Evolution | 1999

Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster.

Hiroyuki Sawada; Fumihiko Suzuki; Izumi Matsuda; Naruya Saitou

Abstract.Pseudomonas syringae are differentiated into approximately 50 pathovars with different plant pathogenicities and host specificities. To understand its pathogenicity differentiation and the evolutionary mechanisms of pathogenicity-related genes, phylogenetic analyses were conducted using 56 strains belonging to 19 pathovars. gyrB and rpoD were adopted as the index genes to determine the course of bacterial genome evolution, and hrpL and hrpS were selected as the representatives of the pathogenicity-related genes located on the genome (chromosome). Based on these data, NJ, MP, and ML phylogenetic trees were constructed, and thus 3 trees for each gene and 12 gene trees in total were obtained, all of which showed three distinct monophyletic groups: Groups 1, 2 and 3. The observation that the same set of OTUs constitute each group in all four genes suggests that these genes had not experienced any intergroup horizontal gene transfer within P. syringae but have been stable on and evolved along with the P. syringae genome. These four index genes were then compared with another pathogenicity-related gene, argK (the phaseolotoxin-resistant ornithine carbamoyltransferase gene, which exists within the argK–tox gene cluster). All 13 strains of pv. phaseolicola and pv. actinidiae used had been confirmed to produce phaseolotoxin and to have argK, whose sequences were completely identical, without a single synonymous substitution among the strains used (Sawada et al. 1997a). On the other hand, argK were not present on the genomes of the other 43 strains used other than pv. actinidiae and pv. phaseolicola. Thus, the productivity of phaseolotoxin and the possession of the argK gene were shown at only two points on the phylogenetic tree: Group 1 (pv. actinidiae) and Group 3 (pv. phaseolicola). A t test between these two pathovars for the synonymous distances of argK and the tandemly combined sequence of the four index genes showed a high significance, suggesting that the argK gene (or argK–tox gene cluster) experienced horizontal gene transfer and expanded its distribution over two pathovars after the pathovars had separated, thus showing a base substitution pattern extremely different from that of the noncluster region of the genome.


FEBS Letters | 2002

Helicobacter pylori in North and South America before Columbus

Yoshio Yamaoka; Etsuro Orito; Masashi Mizokami; Oscar Gutierrez; Naruya Saitou; Tadashi Kodama; Michael S. Osato; Jong G. Kim; Francisco C. Ramirez; Varocha Mahachai; David Y. Graham

We present a molecular epidemiologic study, based on an analysis of vacA, cagA and cag right end junction genotypes from 1042 Helicobacter pylori isolates, suggesting that H. pylori was present in the New World before Columbus. Eight Native Colombian and Alaskan strains possessed novel vacA and/or cagA gene structures and were more closely related to East Asian than to non‐Asian H. pylori. Some Native Alaskan strains appear to have originated in Central Asia and to have arrived after strains found in South America suggesting that H. pylori crossed the Bering Strait from Asia to the New World at different times.


Human Genetics | 1996

Extensive polymorphism of ABO blood group gene: three major lineages of the alleles for the common ABO phenotypes

Kenichi Ogasawara; Makoto Bannai; Naruya Saitou; Ryuichi Yabe; Kenichi Nakata; Michiko Takenaka; Kiyoshi Fujisawa; Makoto Uchikawa; Yoshihide Ishikawa; Takeo Juji; Katsushi Tokunaga

Polymorphism of the ABO blood group gene was investigated in 262 healthy Japanese donors by a polymerase chain reactions-single-strand conformation polymorphism (PCR-SSCP) method, and 13 different alleles were identified. The number of alleles identified in each group was 4 for A1 (provisionally called ABO*A101, *A102, *A103 and *A104 according to the guidelines for human gene nomenclature), 3 for B (ABO*B101, *B102 and *B103), and 6 for O (ABO*O101, *O102, *O103, *O201, *O202 and *O203). Nucleotide sequences of the amplified fragments with different SSCP patterns were determined by direct sequencing. Phylogenetic network analysis revealed that these alleles could be classified into three major lineages, *A/*O1, *B and *O2. In Japanese, *A102 and *13101 were the predominant alleles with frequencies of 83% and 97% in each group, respectively, whereas in group O, two common alleles, *O101 (43%) and *O201 (53%), were observed. These results may be useful for the establishment of ABO genotyping, and these newly described ABO alleles would be advantageous indicators for population studies.


FEBS Letters | 1999

α1,3‐Fucoslytransferase IX (Fuc‐TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc‐TIX

Mika Kaneko; Takashi Kudo; Hiroko Iwasaki; Yuzuru Ikehara; Shoko Nishihara; Satoshi Nakagawa; Katsutoshi Sasaki; Takashi Shiina; Hidetoshi Inoko; Naruya Saitou; Hisashi Narimatsu

The amino acid sequence of Fuc‐TIX is very highly conserved between mouse and human. The number of non‐synonymous nucleotide substitutions of the Fuc‐TIX gene between human and mouse was strikingly low, and almost equivalent to that of the α‐actin gene. This indicates that Fuc‐TIX is under a strong selective pressure of preservation during evolution. The human Fuc‐TIX (hFuc‐TIX) showed a unique characteristics, i.e. hFuc‐TIX was not activated by Mn2+ and Co2+, whereas hFuc‐TIV and hFuc‐TVI were activated by the cations. The hFuc‐TIX transcripts were abundantly expressed in brain and stomach, and interestingly were detected in spleen and peripheral blood leukocytes.


American Journal of Human Genetics | 2004

Natural Selection and Population History in the Human Angiotensinogen Gene (AGT): 736 Complete AGT Sequences in Chromosomes from Around the World

Toshiaki Nakajima; Stephen Wooding; Takuro Sakagami; Mitsuru Emi; Katsushi Tokunaga; Gen Tamiya; Satoshi Umemura; Batmunkh Munkhbat; Feng Jin; Jia Guanjun; Ikuo Hayasaka; Takafumi Ishida; Naruya Saitou; Karel Pavelka; Jean Marc Lalouel; Lynn B. Jorde; Ituro Inoue

Several lines of evidence suggest that patterns of genetic variability in the human angiotensinogen gene (AGT) contribute to phenotypic variability in human hypertension. The A(-6) promoter variant of AGT is associated with higher plasma angiotensinogen levels and increased risk of essential hypertension. The geographic distribution of the A(-6) variant leads to the intriguing hypothesis that the G(-6) promoter variant has been selectively advantageous outside Africa. To test these hypotheses, we investigated the roles of population history and natural selection in shaping patterns of genetic diversity in AGT, by sequencing the entire AGT gene (14400 bp) in 736 chromosomes from Africa, Asia, and Europe. We found that the A(-6) variant is present at higher frequency in African populations than in non-African populations. Neutrality tests found no evidence of a departure from selective neutrality, when whole AGT sequences were compared. However, tests restricted to sites in the vicinity of the A(-6)G polymorphism found evidence of a selective sweep. Sliding-window analyses showed that evidence of the sweep is restricted to sites in tight linkage disequilibrium (LD) with the A(-6)G polymorphism. Further, haplotypes carrying the G(-6) variant showed elevated levels of LD, suggesting that they have risen recently to high frequency. Departures from neutral expectation in some but not all regions of AGT indicate that patterns of diversity in the gene cannot be accounted for solely by population history, which would affect all regions equally. Taken together, patterns of genetic diversity in AGT suggest that natural selection has generally favored the G(-6) variant over the A(-6) variant in non-African populations. However, important localized effects may also be present.


Nature Genetics | 2006

Comparative analysis of chimpanzee and human y chromosomes unveils complex evolutionary pathway

Yoko Kuroki; Atsushi Toyoda; Hideki Noguchi; Todd D. Taylor; Takehiko Itoh; Dae Soo Kim; Dae-Won Kim; Sang Haeng Choi; Il Chul Kim; Han Ho Choi; Yong Sung Kim; Yoko Satta; Naruya Saitou; Tomoyuki Yamada; Shinichi Morishita; Masahira Hattori; Yoshiyuki Sakaki; Hong Seog Park; Asao Fujiyama

The mammalian Y chromosome has unique characteristics compared with the autosomes or X chromosomes. Here we report the finished sequence of the chimpanzee Y chromosome (PTRY), including 271 kb of the Y-specific pseudoautosomal region 1 and 12.7 Mb of the male-specific region of the Y chromosome. Greater sequence divergence between the human Y chromosome (HSAY) and PTRY (1.78%) than between their respective whole genomes (1.23%) confirmed the accelerated evolutionary rate of the Y chromosome. Each of the 19 PTRY protein-coding genes analyzed had at least one nonsynonymous substitution, and 11 genes had higher nonsynonymous substitution rates than synonymous ones, suggesting relaxation of selective constraint, positive selection or both. We also identified lineage-specific changes, including deletion of a 200-kb fragment from the pericentromeric region of HSAY, expansion of young Alu families in HSAY and accumulation of young L1 elements and long terminal repeat retrotransposons in PTRY. Reconstruction of the common ancestral Y chromosome reflects the dynamic changes in our genomes in the 5–6 million years since speciation.


Nucleic Acids Research | 2002

DNA Data Bank of Japan (DDBJ) for genome scale research in life science

Yoshio Tateno; Tadashi Imanishi; Satoru Miyazaki; Kaoru Fukami-Kobayashi; Naruya Saitou; Hideaki Sugawara; Takashi Gojobori

The DNA Data Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp) has made an effort to collect as much data as possible mainly from Japanese researchers. The increase rates of the data we collected, annotated and released to the public in the past year are 43% for the number of entries and 52% for the number of bases. The increase rates are accelerated even after the human genome was sequenced, because sequencing technology has been remarkably advanced and simplified, and research in life science has been shifted from the gene scale to the genome scale. In addition, we have developed the Genome Information Broker (GIB, http://gib.genes.nig.ac.jp) that now includes more than 50 complete microbial genome and Arabidopsis genome data. We have also developed a database of the human genome, the Human Genomics Studio (HGS, http://studio.nig.ac.jp). HGS provides one with a set of sequences being as continuous as possible in any one of the 24 chromosomes. Both GIB and HGS have been updated incorporating newly available data and retrieval tools.

Collaboration


Dive into the Naruya Saitou's collaboration.

Top Co-Authors

Avatar

Takashi Kitano

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiichi Omoto

International Research Center for Japanese Studies

View shared research outputs
Top Co-Authors

Avatar

Feng Jin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takafumi Ishida

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge