Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Narve Brekkå is active.

Publication


Featured researches published by Narve Brekkå.


BMC Cancer | 2009

A reproducible brain tumour model established from human glioblastoma biopsies

Jian Wang; Hrvoje Miletic; Per Øystein Sakariassen; Peter C. Huszthy; Hege Karine Jacobsen; Narve Brekkå; Xingang Li; Peng Zhao; Sverre Mørk; Martha Chekenya; Rolf Bjerkvig; Per Øyvind Enger

BackgroundEstablishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates.MethodsIn this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features.ResultsThe tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms.ConclusionsIn vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression.


Acta Neuropathologica | 2013

EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis

Krishna M. Talasila; Anke Soentgerath; Philipp Euskirchen; Gro Vatne Røsland; Jian Wang; Peter C. Huszthy; Lars Prestegarden; Kai Ove Skaftnesmo; Per Øystein Sakariassen; Eskil Eskilsson; Daniel Stieber; Olivier Keunen; Narve Brekkå; Ingrid Moen; Janice M. Nigro; Olav Karsten Vintermyr; Morten Lund-Johansen; Simone P. Niclou; Sverre Mørk; Per Øyvind Enger; Rolf Bjerkvig; Hrvoje Miletic

Angiogenesis is regarded as a hallmark of cancer progression and it has been postulated that solid tumor growth depends on angiogenesis. At present, however, it is clear that tumor cell invasion can occur without angiogenesis, a phenomenon that is particularly evident by the infiltrative growth of malignant brain tumors, such as glioblastomas (GBMs). In these tumors, amplification or overexpression of wild-type (wt) or truncated and constitutively activated epidermal growth factor receptor (EGFR) are regarded as important events in GBM development, where the complex downstream signaling events have been implicated in tumor cell invasion, angiogenesis and proliferation. Here, we show that amplification and in particular activation of wild-type EGFR represents an underlying mechanism for non-angiogenic, invasive tumor growth. Using a clinically relevant human GBM xenograft model, we show that tumor cells with EGFR gene amplification and activation diffusely infiltrate normal brain tissue independent of angiogenesis and that transient inhibition of EGFR activity by cetuximab inhibits the invasive tumor growth. Moreover, stable, long-term expression of a dominant-negative EGFR leads to a mesenchymal to epithelial-like transition and induction of angiogenic tumor growth. Analysis of human GBM biopsies confirmed that EGFR activation correlated with invasive/non-angiogenic tumor growth. In conclusion, our results indicate that activation of wild-type EGFR promotes invasion and glioblastoma development independent of angiogenesis, whereas loss of its activity results in angiogenic tumor growth.


The Journal of Nuclear Medicine | 2012

Analysis of the Growth Dynamics of Angiogenesis-Dependent and -Independent Experimental Glioblastomas by Multimodal Small-Animal PET and MRI

Thomas Viel; Krishna M. Talasila; Parisa Monfared; Jian Wang; Jan F. Jikeli; Yannic Waerzeggers; Bernd Neumaier; Heiko Backes; Narve Brekkå; Frits Thorsen; Daniel Stieber; Simone P. Niclou; Alexandra Winkeler; Bertrand Tavitian; Mathias Hoehn; Rolf Bjerkvig; Hrvoje Miletic; Andreas H. Jacobs

The hypothesis of this study was that distinct experimental glioblastoma phenotypes resembling human disease can be noninvasively distinguished at various disease stages by imaging in vivo. Methods: Cultured spheroids from 2 human glioblastomas were implanted into the brains of nude rats. Glioblastoma growth dynamics were followed by PET using 18F-FDG, 11C-methyl-l-methionine (11C-MET), and 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) and by MRI at 3–6 wk after implantation. For image validation, parameters were coregistered with immunohistochemical analysis. Results: Two tumor phenotypes (angiogenic and infiltrative) were obtained. The angiogenic phenotype showed high uptake of 11C-MET and 18F-FLT and relatively low uptake of 18F-FDG. 11C-MET was an early indicator of vessel remodeling and tumor proliferation. 18F-FLT uptake correlated to positive Ki67 staining at 6 wk. T1- and T2-weighted MR images displayed clear tumor delineation with strong gadolinium enhancement at 6 wk. The infiltrative phenotype did not accumulate 11C-MET and 18F-FLT and impaired the 18F-FDG uptake. In contrast, the Ki67 index showed a high proliferation rate. The extent of the infiltrative tumors could be observed by MRI but with low contrast. Conclusion: For angiogenic glioblastomas, noninvasive assessment of tumor activity corresponds well to immunohistochemical markers, and 11C-MET was more sensitive than 18F-FLT at detecting early tumor development. In contrast, infiltrative glioblastoma growth in the absence of blood–brain barrier breakdown is difficult to noninvasively follow by existing imaging techniques, and a negative 18F-FLT PET result does not exclude the presence of proliferating glioma tissue. The angiogenic model may serve as an advanced system to study imaging-guided antiangiogenic and antiproliferative therapies.


Radiology and Oncology | 2013

Expansive growth of two glioblastoma stem-like cell lines is mediated by bFGF and not by EGF.

Neza Podergajs; Narve Brekkå; Bernhard Radlwimmer; Christel Herold-Mende; Krishna M. Talasila; Katja Tiemann; Uros Rajcevic; Tamara T. Lah; Rolf Bjerkvig; Hrvoje Miletic

Abstract Background. Patient-derived glioblastoma (GBM) stem-like cells (GSCs) represent a valuable model for basic and therapeutic research. GSCs are usually propagated in serum-free Neural Basal medium supplemented with bFGF and EGF. Yet, the exact influence of these growth factors on GSCs is still unclear. Recently it was suggested that GBM stemlike cells with amplified EGFR should be cultured in stem cell medium without EGF, as the presence of EGF induced rapid loss of EGFR amplification. However, patient biopsies are usually taken into culture before their genomic profiles are defined. Thus, an important question remains whether GBM cells without EGFR amplification also can be cultured in stem cell medium without EGF. Meterials and methods. To address this question, we used two heterogeneous glioblastoma GSC lines (NCH421k and NCH644) that lack EGFR amplification. Results. Although both cell lines showed very low EGFR expression under standard growth conditions, bFGF stimulation induced higher expression of EGFR in NCH644. In both cell lines, expression of the stem cell markers nestin and CD133 was higher upon stimulation with bFGF compared to EGF. Importantly, bFGF stimulated the growth of both cell lines, whereas EGF had no effect. We verified that the growth stimulation by bFGF was either mediated by proliferation (NCH421k) or resistance to apoptosis (NCH644). Conclusions. We demonstrate that GSC cultures without EGFR amplification can be maintained and expanded with bFGF, while the addition of EGF has no significant effect and therefore can be omitted.


Experimental Cell Research | 2011

NUMB does not impair growth and differentiation status of experimental gliomas.

Philipp Euskirchen; Kai-Ove Skaftnesmo; Peter C. Huszthy; Narve Brekkå; Rolf Bjerkvig; Andreas H. Jacobs; Hrvoje Miletic

The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.


PLOS ONE | 2013

Tumor versus stromal cells in culture--survival of the fittest?

Krishna M. Talasila; Narve Brekkå; Kjersti Mangseth; Daniel Stieber; Lasse Evensen; Gro Vatne Røsland; Anja Torsvik; Marek Wagner; Simone P. Niclou; Rupavathana Mahesparan; Olav Karsten Vintermyr; Rolf Bjerkvig; Janice M. Nigro; Hrvoje Miletic

Two of the signature genetic events that occur in human gliomas, EGFR amplification and IDH mutation, are poorly represented in experimental models in vitro. EGFR amplification, for example, occurs in 40 to 50% of GBM, and yet, EGFR amplification is rarely preserved in cell cultures derived from human tumors. To analyze the fate of EGFR amplified and IDH mutated cells in culture, we followed the development over time of cultures derived from human xenografts in nude rats enriched for tumor cells with EGFR amplification and of cultures derived from patient samples with IDH mutations, in serum monolayer and spheroid suspension culture, under serum and serum free conditions. We observed under serum monolayer conditions, that nestin positive or nestin and SMA double positive rat stromal cells outgrew EGFR amplified tumor cells, while serum spheroid cultures preserved tumor cells with EGFR amplification. Serum free suspension culture exhibited a more variable cell composition in that the resultant cell populations were either predominantly nestin/SOX2 co-expressing rat stromal cells or human tumor cells, or a mixture of both. The selection for nestin/SMA positive stromal cells under serum monolayer conditions was also consistently observed in human oligodendrogliomas and oligoastrocytomas with IDH mutations. Our results highlight for the first time that serum monolayer conditions can select for stromal cells instead of tumor cells in certain brain tumor subtypes. This result has an important impact on the establishment of new tumor cell cultures from brain tumors and raises the question of the proper conditions for the growth of the tumor cell populations of interest.


Cancer Research | 2012

Abstract LB-518: Amplification and activation of EGFR wild-type mediates invasion of human glioblastoma in vivo

Krishna M. Talasila; Anke Soentgerath; Philipp Euskirchen; Gro Vatne Røsland; Jian Wang; Peter C. Huszthy; Lars Prestegarden; Kai Ove Skaftnesmo; Per Øystein Sakariassen; Eskil Eskilsson; Olivier Keunen; Narve Brekkå; Ingrid Moen; Janice M. Nigro; Olav Karsten Vintermyr; Morten Lund-Johansen; Sverrre J. Mørk; Per Øyvind Enger; Rolf Bjerkvig; Hrvoje Miletic

Glioblastoma (GBM) is the most aggressive form of primary brain tumors with a median survival of 15 months. Although angiogenesis is one of the main features of GBMs, non-angiogenic tumor infiltration into brain parenchyma still is the major challenge for therapy. Tumor cells can migrate very far from the main tumor mass and the invasive pattern of tumor subpopulations has not been characterized properly. Epidermal growth factor receptor (EGFR) gene amplification is one of the major mutations of primary GBMs, where multiple copies of the wild-type EGFR gene are present as double minutes. Although studies have proposed a role for EGFR gene amplification in tumor development, the function of EGFR in vivo is not characterized properly mainly due to inefficient tumor models. Here, we report a key role for EGFR wild-type in tumor invasion. In a human GBM xenograft model, we show that tumor cells with EGFR amplification and expression are highly invasive and non-angiogenic. By blocking EGFR activation using Cetuximab and a dominant-negative approach, we show that maintenance of the non-angiogenic, invasive growth pattern is dependent on EGFR function and that downregulation of its activity leads to angiogenic tumor growth. As EGFR amplification and expression is present in 40-60% of GBMs, our results might implicate that activation of EGFR wild-type is one of the major mechanisms of glioblastoma invasion in vivo. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr LB-518. doi:1538-7445.AM2012-LB-518


Cancer Cell International | 2014

A novel GFP nude rat model to investigate tumor-stroma interactions

Ning Yang; Bin Huang; Oleg Tsinkalovsky; Narve Brekkå; Huaiyang Zhu; Lina Leiss; Per Øyvind Enger; Xingang Li; Jian Wang


Cancer Research | 2013

Abstract B84: Activated c-Src enhances hypoxia in human glioblastoma multiforme and promotes tumor angiogenesis

Eskil Eskilsson; Krishna M. Talasila; Gro Vatne Røsland; Lina Leiss; Narve Brekkå; Per Øystein Sakariassen; Per Øyvind Enger; Rolf Bjerkvig; Hrvoje Miletic

Collaboration


Dive into the Narve Brekkå's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge