Nasri A. Hamid
Universiti Tenaga Nasional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nasri A. Hamid.
ADVANCING OF NUCLEAR SCIENCE AND ENERGY FOR NATIONAL DEVELOPMENT: Proceedings of the Nuclear Science, Technology, and Engineering Conference 2014 (NuSTEC2014) | 2015
Nasri A. Hamid; M. Z. Yusoff
Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students’ enrolment and performance, and teaching staff’s human resource development.
7th International Nuclear Science, Technology and Engineering Conference 2016, NuSTEC 2016 | 2017
Nasri A. Hamid; Madihah Mujaini
The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university’s Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state o...
Advanced Materials Research | 2012
Nasri A. Hamid; Noor Fairuz Shamsudin
The Bi2Sr2CaCu2O8 (Bi-2212) high-temperature ceramic superconductor has the potential to be applied in power system applications due to its low thermal conductivity. However due to the material’s brittle nature and low strength, reinforcement of the Bi-2212 superconductor is necessary for such applications. Due to its high melting point and lower heat capacity, magnesium oxide (MgO) is an excellent candidate as the reinforcement material. In this study, 3% to 8% weight percentage of nanosize MgO powder was added to Bi-2212 superconductor. The Bi-2212/MgO compounds were palletized and heat treated, followed by partial melting and slow-cooling. X-ray diffraction (XRD) was used to study the phases present in the samples. Scanning electron microscopy (SEM) with energy dispersive X-ray (EDAX) analysis was performed to investigate the microstructure, and for identifying the elemental composition of the samples. Electrical resistance and critical current density (Jc) measurements were carried out using the standard four-probe dc method. The degree of texturing of the microstructure was determined using the texture coefficient calculations. In addition, the mechanical strength of the samples was studied by conducting compression test. The results show that the addition of small amount of MgO particles has improved the texture of the Bi-2212/MgO compound. The compound with 5% MgO addition shows significantly higher strength. Addition of higher than 8% of MgO has resulted in highly porous microstructure and subsequently decreasing the strength of the Bi-2212/MgO compound.
Solid State Phenomena | 2018
Nurul Razliana Abdul Razak; Nasri A. Hamid; Abdul Razak Shaari
The experiment was conducted to determine the effects of vacuum and non-vacuum packaging on the total phenolic content of encapsulated O. stamineus spray-dried powder when stored under different temperatures (10 and 25 °C) for 4 weeks of storage period. The total phenolic compound was measured using the Folin-Ciocalteu method and was analyzed using UV/VIS spectrophotometer. The results showed that both vacuum and non-vacuum packing affected the consistency of capsulated O. stamineus spray-dried powder during storage. The total phenolic content of the samples significantly increased for both vacuum and non-vacuum packaging when stored at 10 °C. However, the total phenolic content of the samples for both vacuum and non-vacuum packaging decreased after 2 weeks of the storage period when the samples stored at room temperature, 25 °C. Thus, it is suggested to keep the encapsulated O. stamineus spray-dried powder under low temperature (10 ˚) with vacuum packaging to sustain the medicinal properties quality and to prolong the shelf-life of the encapsulated products.
Solid State Phenomena | 2018
Nasri A. Hamid; Zaahidah ’Atiqah Mohiju; Yusof Abdullah
The effect of neutron irradiation on superconducting properties of Bi2Sr2CaCu2 (Bi-2212) phase superconductor was studied. TRIGA MARK II research reactor with neutron flux of 2.00 × 1011 /cm2s was used as the neutron source. Results between non-irradiated and irradiated samples have been analyzed from the aspects of microstructure and electrical properties. In this work, the bulk samples were prepared using the conventional solid-state reaction method. Molar ratio of Bi2O3, Sr2CO3, CaCO3 and CuO were mixed according to its ratio into composition of Bi:Sr:Ca:Cu = 2:2:1:2. The samples were sintered at 840°C during the sample preparation process. Some of the fully synthesized samples were irradiated with neutron irradiation. Neutron irradiation has been proved to promote better flux pinning properties by introducing larger defects in various superconductor ceramics. Enhanced flux pinning centers in the superconductor is responsible in enhancing the critical current, Ic and critical current density, Jc of the irradiated samples. The samples were characterized through X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The transition temperature, Tc and the Jc were measured by using a cryogenic four-point probe system. The XRD patterns for the non-irradiated and irradiated samples show well-defined peaks of which could be indexed on the basis of the Bi-2212 phase structure. XRD patterns also indicate that irradiation did not affect the Bi-2212 superconducting phase. However, the enhancement of Jc was observed in the neutron irradiated sample and this indicates the effectiveness of .neutron irradiation in creating defects that acted as effective flux pinning centers for vortices.
Materials Science Forum | 2017
Farha Mizana Shamsudin; Yusof Abdullah; Shahidan Radiman; Nasri A. Hamid
The objective of this study is to investigate the microstructure and effect of annealing to the hardness properties of oxide dispersion strengthened (ODS) Fe-15Cr-0.3Y2O3 alloy. This type of alloy was prepared by mechanical alloying (MA) method followed by compacting and sintering. The microstructure of milled Fe-15Cr-0.3Y2O3 alloy powders and pellet was examined by using field emission scanning electron microscope (FESEM). The milled alloy powders consist of nearly spherical shape of powder particles with average size of 10 µm. For the alloy pellet microstructure, the formations of Y2O3 nanoparticles with average size of 5 nm were observed indicating the dispersion and incorporation of this nano-scale dispersoids into the alloy matrix. Fe-15Cr-0.3Y2O3 alloy pellet was annealed at temperature of 600°C, 800°C and 1000°C, respectively for the Vickers hardness test. The Vickers hardness test was performed by using a micro-Vickers hardness tester with a load of 200 gf. The hardness value (HV) of this alloy pellet started to decrease at temperature of 600°C indicating the grain growth of this material at high temperature
7th International Nuclear Science, Technology and Engineering Conference 2016, NuSTEC 2016 | 2017
Zaahidah ’Atiqah Mohiju; Nasri A. Hamid; Yusof Abdullah
For superconducting material to maintain high critical current density, Jc in any applications, effective flux pinning centers are needed. The addition of small size MgO particles in bulk Bi2Sr2CaCu2O8 (Bi-2212) superconductor has been proven to enhance the effective flux pinning centers in the superconducting material by creating a desired microstructure with appropriate defects. To further enhance the pinning properties, radiation is one of the convenient ways to improve the microstructure of the material that has correlation with basic properties of superconductors. Neutron irradiation is one of the niche techniques that can be used to perform the task. Defects with larger radius have dimension comparable to the coherence length of the material and thus improved its superconducting properties. In this paper, a small amount of nanosized MgO particles was used to create defects in the Bi-2212 superconducting material. The Bi-2212/MgO compounds were heat treated, followed by partial melting and slow cooli...
THE 2016 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium | 2016
Farha Mizana Shamsudin; Shahidan Radiman; Yusof Abdullah; Nasri A. Hamid
Oxide dispersion strengthened (ODS) ferritic alloy containing 12wt% Cr and 0.5wt% Y2O3 was prepared by mechanical alloying (MA) method and then compacted into bulk shape. Field emission scanning electron microscopy (FESEM) was performed to characterize the microstructure of milled alloy powder. The fragments and nanoclusters of Y2O3 were observed in this alloy powder. FESEM-EDS mapping on the milled alloy powder reveal the uniformity of the element distribution achieved by the alloy. The Y element is finely dispersed into the alloy matrix and the O element is observed indicating the presence of oxides throughout the alloy sample. The compacted alloy was then heat treated at 1050°C and analyzed by field emission scanning electron microscope (FESEM). The formations of nano-scale Y2O3 were observed after the heat treatment process of alloy indicating the dispersion and incorporation of Y2O3 nanoparticles into the alloy matrix.
Materials Science Forum | 2016
Nasri A. Hamid; Zaahidah ’Atiqah Mohiju; Nor Faizah Jamal; Yusof Abdullah
The effect of low doses of gamma and electron irradiation on mechanical strength of Bi2Sr2CaCu2O8 (Bi-2212) superconductor ceramics was studied by exposing the superconductor to gamma irradiation dose of up to 50 kGy, and electron irradiation dose of up to 80 kGy. All the samples were prepared using the conventional solid-state reaction method. For samples to be irradiated with electron particles, 5% weight percentage of nanosized MgO was added to absorb certain amount of the energy from electrons and thus reducing the formation of complicated defects structure in the Bi-2212 superconductor. The SEM micrographs of the Bi-2212 superconductor showed the existence of platelet-type grains of Bi-2212 phase in both non-irradiated and irradiated samples. The XRD patterns for the non-irradiated and irradiated samples showed well-defined peaks of which could be indexed on the basis of a Bi-2212 phase structure. The phase purity, lattice parameter, surface morphology and degree of crystallinity for the non-irradiated and irradiated samples were also compared and analyzed and it was found that both the gamma and electron irradiation have considerable effect on the mechanical properties of Bi-2212 superconductor. When subjected to gamma and electron irradiation, the microstructure of the samples was found to be more textured and consequently enhanced the strength of the samples.
ADVANCING NUCLEAR SCIENCE AND ENGINEERING FOR SUSTAINABLE NUCLEAR ENERGY INFRASTRUCTURE: Proceeding of the International Nuclear Science, Technology and Engineering Conference 2015 (iNuSTEC2015) | 2016
M. Mujaini; N. Chankow; M. Z. Yusoff; Nasri A. Hamid
Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from 238U daughters such as 214Bi, 214Pb and 226Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from 235U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from 235U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detector or cadmium telluride (CdTe) detector while a 57Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.