Nasser Abdulatif Al-Shabib
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nasser Abdulatif Al-Shabib.
Frontiers in Microbiology | 2015
Fohad Mabood Husain; Iqbal Ahmad; Mohammad Saghir Khan; Ejaz Ahmad; Qudisa Tahseen; Mohd Shahnawaz Khan; Nasser Abdulatif Al-Shabib
Bacterial quorum sensing (QS) is a density dependent communication system that regulates the expression of certain genes including production of virulence factors in many pathogens. Bioactive plant extract/compounds inhibiting QS regulated gene expression may be a potential candidate as antipathogenic drug. In this study anti-QS activity of peppermint (Mentha piperita) oil was first tested using the Chromobacterium violaceum CVO26 biosensor. Further, the findings of the present investigation revealed that peppermint oil (PMO) at sub-Minimum Inhibitory Concentrations (sub-MICs) strongly interfered with acyl homoserine lactone (AHL) regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Aeromonas hydrophila. The result of molecular docking analysis attributed the QS inhibitory activity exhibited by PMO to menthol. Assessment of ability of menthol to interfere with QS systems of various Gram-negative pathogens comprising diverse AHL molecules revealed that it reduced the AHL dependent production of violacein, virulence factors, and biofilm formation indicating broad-spectrum anti-QS activity. Using two Escherichia coli biosensors, MG4/pKDT17 and pEAL08-2, we also confirmed that menthol inhibited both the las and pqs QS systems. Further, findings of the in vivo studies with menthol on nematode model Caenorhabditis elegans showed significantly enhanced survival of the nematode. Our data identified menthol as a novel broad spectrum QS inhibitor.
Evidence-based Complementary and Alternative Medicine | 2015
Fohad Mabood Husain; Iqbal Ahmad; Mohd Shahnawaz Khan; Nasser Abdulatif Al-Shabib
Trigonella foenum-graecum L. (Fenugreek) is an important plant of the Leguminosae family known to have medicinal properties. However, fraction based antiquorum sensing and antibiofilm activities have not been reported from this plant. In the present study T. foenum-graecum seed extract was sequentially fractionated and sub-MICs were tested for above activities. The methanol fraction of the extract demonstrated significant inhibition of AHL regulated virulence factors: protease, LasB elastase, pyocyanin production, chitinase, EPS, and swarming motility in Pseudomonas aeruginosa PAO1 and PAF79. Further, QS dependent virulence factor in the aquatic pathogen Aeromonas hydrophila WAF38 was also reduced. Application of T. foenum-graecum seed extract to PAO1, PAF79, and WAF38 decreased the biofilm forming abilities of the pathogens by significant levels. The extract also exhibited reduced AHL levels and subsequent downregulation of lasB gene. In vivo study showed an enhanced survival of PAO1-preinfected C. elegans after treatment with extract at 1 mg/mL. Further, the major compound detected by GC-MS, caffeine, reduced the production of QS regulated virulence factors and biofilm at 200 µg/mL concentration indicating its role in the activity of the methanol extract. The results of the present study reveal the potential anti-QS and antibiofilm property of T. foenum-graceum extract and caffeine.
Scientific Reports | 2016
Nasser Abdulatif Al-Shabib; Fohad Mabood Husain; Faheem Ahmed; Rais Ahmad Khan; Iqbal Ahmad; Edreese Alsharaeh; Mohd Shahnawaz Khan; Afzal Hussain; Tabish Rehman; Mohammad Yusuf; Iftekhar Hassan; Javed Masood Khan; Ghulam Md Ashraf; Ali Alsalme; Mohamed F. AlAjmi; Vadim V. Tarasov; Gjumrakch Aliev
Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative.
RSC Advances | 2016
Javed Masood Khan; Mohd Shahnawaz Khan; Mohd. Sajid Ali; Nasser Abdulatif Al-Shabib; Rizwan Hasan Khan
Amyloid fibril formation has been seen as the underlying reason for various pathological disorders studied in humans. Understanding the mechanism of amyloid fibril formation is important to prevent the onset or to develop a possible cure. In this study, we have experienced to understand the role of positively charged head and hydrophobic tail of cationic surfactant and its propensity to stimulate amyloid fibril formation in concanavalin A. Several spectroscopic techniques (far-UV CD, FTIR, Rayleigh scattering, turbidity, intrinsic fluorescence, and dye binding assays) in addition to transmission electron microscopy were employed to analyze the mode of interaction between ConA and cetyltrimethylammonium bromide (CTAB) during amyloid fibril formation. We have found that negatively charged ConA at pH 7.4, transforms into amyloid fibril in response to significantly low concentrations of CTAB while higher concentrations abolishes the amyloid fibril formation. Interestingly, ConA at pH 3.5 did not form amyloid fibril at varying concentrations of CTAB. A characteristically unique type of secondary structural transition was seen under the varying concentrations of CTAB. At low CTAB concentrations far-UV CD spectrum minimum shifts towards higher wavelength (222–225 nm) whereas at higher concentrations the β-sheet transformed into α-helical structures which is also evident from FTIR measurements. These results suggest that electrostatics as well as hydrophobic interaction are involved in the CTAB induced amyloid fibril formation. This study opens up the possibilities to understand the molecular mechanism of the interaction between CTAB and ConA and also helps to make a molecule which can inhibit or suppress the amyloid fibrillogenesis.
RSC Advances | 2016
Fohad Mabood Husain; Iqbal Ahmad; Mohammad Hassan Baig; Mohammad Shavez Khan; Mohd Shahnawaz Khan; Iftekhar Hassan; Nasser Abdulatif Al-Shabib
Quorum sensing (QS) in bacteria is a density dependent communication system that regulates the expression of genes, including production of virulence factors in many pathogens. The emergence of antibiotic resistance among pathogenic bacteria represents a major threat in both hospitals as well as environmental settings. Interference of quorum sensing (QS)-regulated virulence factors and biofilms is a recognized anti-pathogenic therapy. Safe, stable and effective anti-QS agents are needed to combat diseases caused by multidrug-resistant bacteria. The present study was performed to assess the inhibitory effect of third generation antibiotic ceftazidime against Gram-negative bacterial pathogens. Sub-MICs of ceftazidime demonstrated dose dependent inhibition of QS regulated virulence traits and biofilm formation in various strains of Chromobacterium violaceum (CV12472 and CVO26), Pseudomonas aeruginosa (PAO1 and PAF79) and Aeromonas hydrophila (WAF38). β-galactosidase assay revealed ceftazidime inhibited the las and pqs QS systems in P. aeruginosa. Alongside, in vivo studies demonstrated enhanced survival of Caenorhabditis elegans after the treatment with the drug. Molecular docking analysis showed the high binding affinity of ceftazidime which represents its QS inhibitory activity. By highlighting the broad spectrum anti-quorum sensing and biofilm inhibiting activities against 3 different bacterial pathogens, ceftazidime seems a more potent candidate in counteracting the infections caused by drug resistant bacteria.
International Journal of Biological Macromolecules | 2017
Nasser Abdulatif Al-Shabib; Javed Masood Khan; Mohd Shahnawaz Khan; Mohd. Sajid Ali; Abdulrahman M. Alsenaidy; Mohammad A. Alsenaidy; Fohad Mabood Husain; Hamad A. Al-Lohedan
Protein aggregation, a characteristic of several neurodegenerative diseases, displays vast conformational diversity from amorphous to amyloid-like aggregates. In this study, we have explored the interaction of tartrazine with myoglobin protein at two different pHs (7.4 and 2.0). We have utilized various spectroscopic techniques (turbidity, Rayleigh light scattering (RLS), intrinsic fluorescence, Congo Red and far-UV CD) along with microscopy techniques i.e. atomic force microscopy (AFM) and transmission electron microscopy (TEM) to characterize the tartrazine-induced aggregation in myoglobin. The results showed that higher concentrations of tartrazine (2.0-10.0mM) induced amorphous aggregation in myoglobin at pH 2.0 via electrostatic interactions. However, tartrazine was not able to induce aggregation in myoglobin at pH 7.4; because of strong electrostatic repulsion between myoglobin and tartrazine at this pH. The tartrazine-induced amorphous aggregation process is kinetically very fast, and aggregation occurred without the formation of a nucleus. These results proposed that the electrostatic interaction is responsible for tartrazine-induced amorphous aggregation. This study may help in the understanding of mechanistic insight of aggregation by tartrazine.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2018
Nasser Abdulatif Al-Shabib; Javed Masood Khan; Mohammad A. Alsenaidy; Abdulrahman M. Alsenaidy; Mohd Shahnawaz Khan; Fohad Mabood Husain; Mohammad Rashid Khan; Mohammad Naseem; Priyankar Sen; Parvez Alam; Rizwan Hasan Khan
Amyloid fibrils are playing key role in the pathogenesis of various neurodegenerative diseases. Generally anionic molecules are known to induce amyloid fibril in several proteins. In this work, we have studied the effect of anionic food additive dye i.e., tartrazine (TZ) on the amyloid fibril formation of human serum albumins (HSA) and bovine serum albumin (BSA) at pHs7.4 and 3.5. We have employed various biophysical methods like, turbidity measurements, Rayleigh Light Scattering (RLS), Dynamic Light Scattering (DLS), intrinsic fluorescence, Congo red assay, far-UV CD, transmission electron microscopy (TEM) and atomic force microscopy (AFM) to decipher the mechanism of TZ-induce amyloid fibril formation in both the serum albumins at pHs7.4 and 3.5. The obtained results suggest that both the albumins forms amyloid-like aggregates in the presence of 1.0 to 15.0mM of TZ at pH3.5, but no amyloid fibril were seen at pH7.4. The possible cause of TZ-induced amyloid fibril formation is electrostatic and hydrophobic interaction because sulfate group of TZ may have interacted electrostatically with positively charged amino acids of the albumins at pH3.5 and increased protein-protein and protein-TZ interactions leading to amyloid fibril formation. The TEM, RLS and DLS results are suggesting that BSA forms bigger size amyloids compared to HSA, may be due to high surface hydrophobicity of BSA.
Biotechnology & Biotechnological Equipment | 2017
Nasser Abdulatif Al-Shabib; Fohad Mabood Husain; Iqbal Ahmad; Mohammad Hassan Baig
ABSTRACT Food handlers are important component in assessment and maintenance of food quality as they are carriers of food pathogens causing spoilage. Food spoilage is attributed to quorum sensing (QS) controlled development of biofilms. Therefore, there is an urgent need to develop novel QS and biofilm inhibitors to prevent spoilage of food products. In the present study, toxin producing biofilm forming methicillin-resistant Staphylococcus aureus (MRSA) were isolated from food handlers. Further, eugenol was screened for its QS and anti-biofilm properties. Analysis of nasal and hand swabs revealed the presence of seven toxigenic and biofilm forming MRSA strains. Eugenol demonstrated significant anti-QS activity in CVO26 and also reduced the QS-regulated production of elastase, protease, chitinase, pyocyanin and exopolysaccharide (EPS) in PAO1 considerably. Eugenol demonstrated 17%–86%, 24%–69%, 30%–91%, 9%–94% and 4%–89% reduction in biofilm biomass of S. aureus ATCC 25923 and MRSA strains FSA3, FSA11, FSA13 and FSA32, respectively. Sub-inhibitory concentrations of eugenol also decreased the metabolic activity in biofilm cells. Molecular docking analysis showed high binding affinity of eugenol that represents its biofilm inhibitory activity. This is the first report on the carriage of toxigenic drug-resistant biofilm forming S. aureus by food handlers and inhibition of their biofilms in the Kingdom of Saudi Arabia. The findings give a clear insight into the food safety hazards associated with the carriage of S. aureus and present eugenol as a broad-spectrum anti-QS and anti-biofilm agent.
Journal of Biomolecular Structure & Dynamics | 2018
Javed Masood Khan; Mohd Shahnawaz Khan; Mohammad A. Alsenaidy; Anwar Ahmed; Priyankar Sen; Mohammad Oves; Nasser Abdulatif Al-Shabib; Rizwan Hasan Khan
Amyloid fibril formation is responsible for several neurodegenerative diseases and are formed when native proteins misfold and stick together with different interactive forces. In the present study, we have determined the mode of interaction of the anionic surfactant sarkosyl with hen egg white lysozyme (HEWL) [EC No. 3.2.1.17] at two pHs (9.0 and 13.0) and investigated its impact on fibrillogenesis. Our data suggested that sarkosyl is promoting amyloid fibril formation in HEWL at the concentration range between 0.9 and 3.0 mM and no amyloid fibril formation was observed in the concentration range of 3.0–20.0 mM at pH 9.0. The results were confirmed by several biophysical and computational techniques, such as turbidity measurement, dynamic light scattering, Raleigh scattering, ThT fluorescence, intrinsic fluorescence, far-UV CD and atomic force microscopy. Sarkosyl was unable to induce aggregation in HEWL at pH 13.0 as confirmed by turbidity and RLS measurements. HEWL forms larger amyloid fibrils in the presence of 1.6 mM of sarkosyl. The spectroscopic, microscopic and molecular docking data suggest that the negatively charged carboxylate group and 12-carbon hydrophobic tail of sarkosyl stimulate amyloid fibril formation in HEWL via electrostatic and hydrophobic interaction. This study leads to new insight into the process of suppression of fibrillogenesis in HEWL which can be prevented by designing ligands that can retard the electrostatic and hydrophobic interaction between sarkosyl and HEWL.
International Journal of Biological Macromolecules | 2018
Nasser Abdulatif Al-Shabib; Javed Masood Khan; Ajamaluddin Malik; Abdulrahman M. Alsenaidy; Mohammad A. Alsenaidy; Fohad Mabood Husain; Monis Bilal Shamsi; Syed Hidayathulla; Rizwan Hasan Khan
Recent studies have led to an increased interest to categorize small molecular inhibitors of protein fibrillation. In this study, we used spectroscopy, microscopy and gel electrophoresis techniques that provides an elaborated description of the Allura Red-induced amyloid fibrillation in the β-LG protein at two pHs (7.4 and 3.5). The spectroscopy results show that β-LG protein form aggregates in the presence of Allura Red (0.04-15.0mM) at pH 3.5 due to electrostatic and hydrophobic interactions. However, at pH 7.4, the β-LG does not interact electrostatically with Allura Red and therefore no aggregation occurred. The Allura Red-induced aggregates have an amyloid-like structure that was confirmed by far-UV CD, Congo Red and transmission electron microscopy (TEM). The CD spectrum of β-LG contains single minima at ∼218nm, which shifts towards higher wavelength minima at ∼225nm in the presence of Allura Red, characteristics of the cross β-sheet structure. The TEM results suggest that β-LG form long straight fibril when exposed to Allura Red at pH 3.5. The Allura Red-induced amyloid fibril is SDS-soluble confirmed by SDS-PAGE techniques. A far UV CD result shows the conversion of Allura Red induced cross β-sheet structure into alpha-helical structure in the presence of increasing concentration of SDS. The results of this study suggest that the electrostatic, as well as hydrophobic interactions play an important role during Allura Red-induced β-LG fibrillation.