Natalia Connolly
Hamilton College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalia Connolly.
The Astrophysical Journal | 2012
Nao Suzuki; D. Rubin; C. Lidman; Gregory Scott Aldering; R. Amanullah; K. Barbary; L. F. Barrientos; J. Botyánszki; Mark Brodwin; Natalia Connolly; Kyle S. Dawson; Arjun Dey; Mamoru Doi; Megan Donahue; Susana Elizabeth Deustua; Peter R. M. Eisenhardt; Erica Ellingson; L. Faccioli; V. Fadeyev; H. K. Fakhouri; Andrew S. Fruchter; David G. Gilbank; Michael D. Gladders; G. Goldhaber; Anthony H. Gonzalez; Ariel Goobar; A. Gude; T. Hattori; Henk Hoekstra; E. Y. Hsiao
We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.
The Astrophysical Journal | 2009
K. Barbary; Kyle S. Dawson; Kouichi Tokita; Gregory Scott Aldering; Rahman Amanullah; Natalia Connolly; Mamoru Doi; L. Faccioli; V. Fadeyev; Andrew S. Fruchter; Gerson Goldhaber; Ariel Goobar; A. Gude; X. Huang; Yutaka Ihara; Kohki Konishi; M. Kowalski; C. Lidman; Joshua Meyers; P. Nugent; S. Perlmutter; D. Rubin; David J. Schlegel; A. L. Spadafora; Nao Suzuki; H. Swift; Naohiro Takanashi; R. C. Thomas; Norihito Yasuda
We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~;;100 days, reached a peak magnitude of ~;;21.0 in both i_775 and z_850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3 sigma upper limit of i_775 = 26.4 and z_850 = 26.1, giving a corresponding lower limit on the flux increase of a factor of ~;;120. Multiple spectra show five broad absorption bands between 4100 AA and 6500 AA and a mostly featureless continuum longward of 6500 AA. The shape of the lightcurve is inconsistent with microlensing. The transients spectrum, in addition to being inconsistent with all known supernova types, is not matched to any spectrum in the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may be one of a new class.
The Astrophysical Journal | 2012
Joel R. Brownstein; Adam S. Bolton; David J. Schlegel; Daniel J. Eisenstein; Christopher S. Kochanek; Natalia Connolly; Claudia Maraston; Parul Pandey; S. Seitz; David A. Wake; W. Michael Wood-Vasey; J. Brinkmann; Donald P. Schneider; Benjamin A. Weaver
We present a catalog of 25 definite and 11 probable strong galaxy–galaxy gravitational lens systems with lens redshifts 0.4 <~ z <~ 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift.We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy–galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulgedominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.
The Astronomical Journal | 2009
Kyle S. Dawson; G. Aldering; R. Amanullah; K. Barbary; L. F. Barrientos; Mark Brodwin; Natalia Connolly; Arjun Dey; Mamoru Doi; Megan Donahue; Peter R. M. Eisenhardt; Erica Ellingson; L. Faccioli; V. Fadeyev; H. K. Fakhouri; Andrew S. Fruchter; David G. Gilbank; Michael D. Gladders; G. Goldhaber; Anthony H. Gonzalez; Ariel Goobar; A. Gude; T. Hattori; Henk Hoekstra; X. Huang; Yutaka Ihara; Buell T. Jannuzi; David E. Johnston; K. Kashikawa; Benjamin P. Koester
We present a new survey strategy to discover and study high-redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 0.95, nine of which were in galaxy clusters. This strategy provides an SN sample that can be used to decouple the effects of host-galaxy extinction and intrinsic color in high-redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology.
The Astrophysical Journal | 2012
K. Barbary; Gregory Scott Aldering; Rahman Amanullah; Mark Brodwin; Natalia Connolly; Kyle S. Dawson; Mamoru Doi; Peter R. M. Eisenhardt; L. Faccioli; V. Fadeyev; Hannah Fakhouri; Andrew S. Fruchter; David G. Gilbank; Michael D. Gladders; Gerson Goldhaber; Ariel Goobar; T. Hattori; E. Y. Hsiao; X. Huang; Yutaka Ihara; Nobunari Kashikawa; Benjamin P. Koester; Kohki Konishi; M. Kowalski; C. Lidman; Lori M. Lubin; Joshua Meyers; Takeshi Oda; Nino Panagia; S. Perlmutter
We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 0.9 SNe. Finding 8 +/- 1 cluster SNe Ia, we determine an SN Ia rate of 0.50(-0.19)(+0.23) (stat) (+0.10)(-0.09) (sys) h(70)(2) SNuB (SNuB equivalent to 10(-12) SNe (L-1)circle dot(,B) yr(-1)). In units of stellar mass, this translates to 0.36(-0.13)(+0.16) (stat) (+0.07)(-0.06) (sys) h(70)(2) SNuM (SNuM = 10(-12) SNe M-1 circle dot yr(-1)). This represents a factor of approximate to 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: Psi(t) t(s). Under the approximation of a single-burst cluster formation redshift of z(f) = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41(-0.40)(+0.47), consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the double degenerate scenario and inconsistent with some models for the single degenerate scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.
The Astrophysical Journal | 2013
D. Rubin; R. A. Knop; E. S. Rykoff; Gregory Scott Aldering; Rahman Amanullah; K. Barbary; M. S. Burns; A. Conley; Natalia Connolly; Susana Elizabeth Deustua; V. Fadeyev; H. K. Fakhouri; Andrew S. Fruchter; R. Gibbons; G. Goldhaber; Ariel Goobar; E. Y. Hsiao; X. Huang; M. Kowalski; C. Lidman; Joshua Meyers; J. Nordin; S. Perlmutter; C. Saunders; A. L. Spadafora; V. Stanishev; Nao Suzuki; and L. Wang
We report the discovery of a redshift 1.71 supernova in the GOODS-North field. The Hubble Space Telescope (HST) ACS spectrum has almost negligible contamination from the host or neighboring galaxies. Although the rest-frame-sampled range is too blue to include any Si II line, a principal component analysis allows us to confirm it as a Type Ia supernova with 92% confidence. A recent serendipitous archival HST WFC3 grism spectrum contributed a key element of the confirmation by giving a host-galaxy redshift of 1.713 +/- 0.007. In addition to being the most distant SN Ia with spectroscopic confirmation, this is the most distant Ia with a precision color measurement. We present the ACS WFC and NICMOS 2 photometry and ACS and WFC3 spectroscopy. Our derived supernova distance is in agreement with the prediction of CDM.
The Astrophysical Journal | 2009
D. Rubin; Eric V. Linder; M. Kowalski; Gregory Scott Aldering; R. Amanullah; K. Barbary; Natalia Connolly; Kyle S. Dawson; L. Faccioli; V. Fadeyev; G. Goldhaber; Ariel Goobar; I. M. Hook; C. Lidman; Joshua Meyers; S. Nobili; P. Nugent; R. Pain; S. Perlmutter; Pilar Ruiz-Lapuente; A. L. Spadafora; M. Strovink; Nao Suzuki; H. Swift
The recent robust and homogeneous analysis of the worlds supernova distance-redshift data, together with cosmic microwave background and baryon acoustic oscillation data—provides a powerful tool for constraining cosmological models. Here we examine particular classes of scalar field, modified gravity, and phenomenological models to assess whether they are consistent with observations even when their behavior deviates from the cosmological constant Λ. Some models have tension with the data, while others survive only by approaching the cosmological constant, and a couple are statistically favored over Λ cold dark matter. Dark energy described by two equation-of-state parameters has considerable phase space to avoid Λ and next-generation data will be required to constrain such physics, with the level of complementarity between probes varying with cosmology.
The Astrophysical Journal | 2009
D. Farrah; B. Connolly; Natalia Connolly; H. W. W. Spoon; Seb Oliver; H. B. Prosper; Lee Armus; J. R. Houck; Andrew R. Liddle; Vandana Desai
We apply methods from Bayesian inferencing and graph theory to a data set of 102 mid-infrared spectra, and archival data from the optical to the millimeter, to construct an evolutionary paradigm for z < 0.4 infrared-luminous galaxies. We propose that the ultraluminous infrared galaxies (ULIRG) lifecycle consists of three phases. The first phase lasts from the initial encounter until approximately coalescence. It is characterized by homogeneous mid-IR spectral shapes, and IR emission mainly from star formation, with a contribution from an active galactic nucleus (AGN) in some cases. At the end of this phase, a ULIRG enters one of two evolutionary paths depending on the dynamics of the merger, the available quantities of gas, and the masses of the black holes in the progenitors. On one branch, the contributions from the starburst and the AGN to the total IR luminosity decline and increase, respectively. The IR spectral shapes are heterogeneous, likely due to feedback from AGN-driven winds. Some objects go through a brief QSO phase at the end. On the other branch, the decline of the starburst relative to the AGN is less pronounced, and few or no objects go through a QSO phase. We show that the 11.2 μm polycyclic aromatic hydrocarbon feature is a remarkably good diagnostic of evolutionary phase, and identify six ULIRGs that may be archetypes of key stages in this lifecycle.
The Astrophysical Journal | 2012
K. Barbary; Gregory Scott Aldering; R. Amanullah; Mark Brodwin; Natalia Connolly; Kyle S. Dawson; Mamoru Doi; Peter R. M. Eisenhardt; L. Faccioli; V. Fadeyev; H. K. Fakhouri; Andrew S. Fruchter; David G. Gilbank; Michael D. Gladders; G. Goldhaber; Ariel Goobar; T. Hattori; E. Y. Hsiao; X. Huang; Yutaka Ihara; Nobunari Kashikawa; Benjamin P. Koester; Kohki Konishi; M. Kowalski; C. Lidman; Lori M. Lubin; Joshua Meyers; Takeshi Oda; Nino Panagia; S. Perlmutter
We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z similar or equal to 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z greater than or similar to 1 and strengthening the case for an SN Ia rate that is greater than or similar to 0.6 x 10(-4) h(70)(3) yr(-1) Mpc(-3) at z similar to 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce significant systematic differences between measurements.
The Astrophysical Journal | 2010
D. Farrah; Tanya Urrutia; Mark Lacy; V. Lebouteiller; H. W. W. Spoon; J. Bernard-Salas; Natalia Connolly; J. Afonso; B. Connolly; J. R. Houck
We present mid-infrared (mid-IR) spectra of six FeLoBAL quasi-stellar objects (QSOs) at 1 < z < 1.8, taken with the Spitzer Space Telescope. The spectra span a range of shapes, from hot dust-dominated active galactic nuclei (AGNs) with silicate emission at 9.7 μm to moderately obscured starbursts with strong polycyclic aromatic hydrocarbon (PAH) emission. The spectrum of one object, SDSS 1214–0001, shows the most prominent PAHs yet seen in any QSO at any redshift, implying that the starburst dominates the mid-IR emission with an associated star formation rate on the order of 2700 M_⊙ yr^(–1). With the caveats that our sample is small and not robustly selected, we combine our mid-IR spectral diagnostics with previous observations to propose that FeLoBAL QSOs are at least largely comprised of systems in which (1) a merger-driven starburst is ending, (2) a luminous AGN is in the last stages of burning through its surrounding dust, and (3) we may be viewing over a restricted line-of-sight range.