Natalia Dudareva
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalia Dudareva.
Critical Reviews in Plant Sciences | 2006
Natalia Dudareva; Florence Negre; Dinesh A. Nagegowda; Irina Orlova
Volatile compounds act as a language that plants use for their communication and interaction with the surrounding environment. To date, a total of 1700 volatile compounds have been isolated from more than 90 plant families. These volatiles, released from leaves, flowers, and fruits into the atmosphere and from roots into the soil, defend plants against herbivores and pathogens or provide a reproductive advantage by attracting pollinators and seed dispersers. Plant volatiles constitute about 1% of plant secondary metabolites and are mainly represented by terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. In this review we focus on the functions of plant volatiles, their biosynthesis and regulation, and the metabolic engineering of the volatile spectrum, which results in plant defense improvement and changes of scent and aroma properties of flowers and fruits.
Plant Physiology | 2004
Natalia Dudareva; Eran Pichersky; Jonathan Gershenzon
Plants have a penchant for perfuming the atmosphere around them. Since antiquity it has been known that both floral and vegetative parts of many species emit substances with distinctive smells. The discovery of the gaseous hormone ethylene 70 years ago brought the realization that at least some of
Annual Review of Plant Biology | 2012
Hiroshi Maeda; Natalia Dudareva
L-tryptophan, L-phenylalanine, and L-tyrosine are aromatic amino acids (AAAs) that are used for the synthesis of proteins and that in plants also serve as precursors of numerous natural products, such as pigments, alkaloids, hormones, and cell wall components. All three AAAs are derived from the shikimate pathway, to which ≥30% of photosynthetically fixed carbon is directed in vascular plants. Because their biosynthetic pathways have been lost in animal lineages, the AAAs are essential components of the diets of humans, and the enzymes required for their synthesis have been targeted for the development of herbicides. This review highlights recent molecular identification of enzymes of the pathway and summarizes the pathway organization and the transcriptional/posttranscriptional regulation of the AAA biosynthetic network. It also identifies the current limited knowledge of the subcellular compartmentalization and the metabolite transport involved in the plant AAA pathways and discusses metabolic engineering efforts aimed at improving production of the AAA-derived plant natural products.
New Phytologist | 2013
Natalia Dudareva; Antje Klempien; Joëlle K. Muhlemann; Ian Kaplan
Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation.
Plant Physiology | 2004
Jennifer Boatright; Florence Negre; Xinlu Chen; Christine M. Kish; Barbara Wood; Greg Peel; Irina Orlova; David R. Gang; David Rhodes; Natalia Dudareva
In vivo stable isotope labeling and computer-assisted metabolic flux analysis were used to investigate the metabolic pathways in petunia (Petunia hybrida) cv Mitchell leading from Phe to benzenoid compounds, a process that requires the shortening of the side chain by a C2 unit. Deuterium-labeled Phe (2H5-Phe) was supplied to excised petunia petals. The intracellular pools of benzenoid/phenylpropanoid-related compounds (intermediates and end products) as well as volatile end products within the floral bouquet were analyzed for pool sizes and labeling kinetics by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Modeling of the benzenoid network revealed that both the CoA-dependent, β-oxidative and CoA-independent, non-β-oxidative pathways contribute to the formation of benzenoid compounds in petunia flowers. The flux through the CoA-independent, non-β-oxidative pathway with benzaldehyde as a key intermediate was estimated to be about 2 times higher than the flux through the CoA-dependent, β-oxidative pathway. Modeling of 2H5-Phe labeling data predicted that in addition to benzaldehyde, benzylbenzoate is an intermediate between l-Phe and benzoic acid. Benzylbenzoate is the result of benzoylation of benzyl alcohol, for which activity was detected in petunia petals. A cDNA encoding a benzoyl-CoA:benzyl alcohol/phenylethanol benzoyltransferase was isolated from petunia cv Mitchell using a functional genomic approach. Biochemical characterization of a purified recombinant benzoyl-CoA:benzyl alcohol/phenylethanol benzoyltransferase protein showed that it can produce benzylbenzoate and phenylethyl benzoate, both present in petunia corollas, with similar catalytic efficiencies.
The Plant Cell | 2003
Natalia Dudareva; Diane M. Martin; Christine M. Kish; Natalia Kolosova; Nina M. Gorenstein; Jenny Fäldt; Barbara Miller; Jörg Bohlmann
Snapdragon flowers emit two monoterpene olefins, myrcene and (E)-β-ocimene, derived from geranyl diphosphate, in ad-dition to a major phenylpropanoid floral scent component, methylbenzoate. Emission of these monoterpenes is regulated developmentally and follows diurnal rhythms controlled by a circadian clock. Using a functional genomics approach, we have isolated and characterized three closely related cDNAs from a snapdragon petal-specific library that encode two myrcene synthases (ama1e20 and ama0c15) and an (E)-β-ocimene synthase (ama0a23). Although the two myrcene synthases are almost identical (98%), except for the N-terminal 13 amino acids, and are catalytically active, yielding a single monoterpene product, myrcene, only ama0c15 is expressed at a high level in flowers and contributes to floral myrcene emission. (E)-β-Ocimene synthase is highly similar to snapdragon myrcene synthases (92% amino acid identity) and produces predominantly (E)-β-ocimene (97% of total monoterpene olefin product) with small amounts of (Z)-β-ocimene and myrcene. These newly isolated snapdragon monoterpene synthases, together with Arabidopsis AtTPS14 (At1g61680), define a new subfamily of the terpene synthase (TPS) family designated the Tps-g group. Members of this new Tps-g group lack the RRx8W motif, which is a characteristic feature of the Tps-d and Tps-b monoterpene synthases, suggesting that the reaction mechanism of Tps-g monoterpene synthase product formation does not proceed via an RR-dependent isomerization of geranyl diphosphate to 3S-linalyl diphosphate, as shown previously for limonene cyclase. Analyses of tissue-specific, developmental, and rhythmic expression of these monoterpene synthase genes in snapdragon flowers revealed coordinated regulation of phenylpropanoid and isoprenoid scent production.
The Plant Cell | 2000
Natalia Dudareva; Lisa M. Murfitt; Craig J. Mann; Nina M. Gorenstein; Natalia Kolosova; Christine M. Kish; Connie C. Bonham; Karl V. Wood
In snapdragon flowers, the volatile ester methyl benzoate is the most abundant scent compound. It is synthesized by and emitted from only the upper and lower lobes of petals, where pollinators (bumblebees) come in contact with the flower. Emission of methyl benzoate occurs in a rhythmic manner, with maximum emission during the day, which correlates with pollinator activity. A novel S-adenosyl-l-methionine:benzoic acid carboxyl methyl transferase (BAMT), the final enzyme in the biosynthesis of methyl benzoate, and its corresponding cDNA have been isolated and characterized. The complete amino acid sequence of the BAMT protein has only low levels of sequence similarity to other previously characterized proteins, including plant O-methyl transferases. During the life span of the flower, the levels of methyl benzoate emission, BAMT activity, BAMT gene expression, and the amounts of BAMT protein and benzoic acid are developmentally and differentially regulated. Linear regression analysis revealed that production of methyl benzoate is regulated by the amount of benzoic acid and the amount of BAMT protein, which in turn is regulated at the transcriptional level.
Journal of Biological Chemistry | 2006
Yasuhisa Kaminaga; Jennifer Schnepp; Greg Peel; Christine M. Kish; Gili Ben-Nissan; David Weiss; Irina Orlova; Orly Lavie; David Rhodes; Karl V. Wood; D. Marshall Porterfield; Arthur J. L. Cooper; John V. Schloss; Eran Pichersky; Alexander Vainstein; Natalia Dudareva
We have isolated and characterized Petunia hybrida cv. Mitchell phenylacetaldehyde synthase (PAAS), which catalyzes the formation of phenylacetaldehyde, a constituent of floral scent. PAAS is a cytosolic homotetrameric enzyme that belongs to group II pyridoxal 5′-phosphate-dependent amino-acid decarboxylases and shares extensive amino acid identity (∼65%) with plant l-tyrosine/3,4-dihydroxy-l-phenylalanine and l-tryptophan decarboxylases. It displays a strict specificity for phenylalanine with an apparent Km of 1.2 mm. PAAS is a bifunctional enzyme that catalyzes the unprecedented efficient coupling of phenylalanine decarboxylation to oxidation, generating phenylacetaldehyde, CO2, ammonia, and hydrogen peroxide in stoichiometric amounts.
The Plant Cell | 2003
Florence Negre; Christine M. Kish; Jennifer Boatright; Beverly A. Underwood; Kenichi Shibuya; Conrad Wagner; David G. Clark; Natalia Dudareva
The molecular mechanisms responsible for postpollination changes in floral scent emission were investigated in snapdragon cv Maryland True Pink and petunia cv Mitchell flowers using a volatile ester, methylbenzoate, one of the major scent compounds emitted by these flowers, as an example. In both species, a 70 to 75% pollination-induced decrease in methylbenzoate emission begins only after pollen tubes reach the ovary, a process that takes between 35 and 40 h in snapdragon and ∼32 h in petunia. This postpollination decrease in emission is not triggered by pollen deposition on the stigma. Petunia and snapdragon both synthesize methylbenzoate from benzoic acid and S-adenosyl-l-methionine (SAM); however, they use different mechanisms to downregulate its production after pollination. In petunia, expression of the gene responsible for methylbenzoate synthesis is suppressed by ethylene. In snapdragon, the decrease in methylbenzoate emission is the result of a decrease in both S-adenosyl-l-methionine:benzoic acid carboxyl methyltransferase (BAMT) activity and the ratio of SAM to S-adenosyl-l-homocysteine (“methylation index”) after pollination, although the BAMT gene also is sensitive to ethylene.
Biology of floral scent. | 2006
Natalia Dudareva; Eran Pichersky
As with nearly all living creatures, humans have always been attracted and intrigued by floral scents. Yet, while we have been manufacturing perfumes for at least 5000 years to serve a myriad of religious, sexual, and medicinal purposes, until very recently, the limitation of our olfactory faculty has greatly hindered our capacity to clearly and objectively measure scent. Today, thanks to advances in practical methodologies and affordable instrumentation, we are now able to collect, separate, and identify volatile compounds with aromatic impact. These advances are leading to much intensive investigation that has already resulted in many highly insightful and useful discoveries.Biology of Floral Scent provides the first comprehensive treatment of the biology of floral scents. It reviews the impressive research being done across several disciplines, incorporating molecular biology, enzymology, chemistry, entomology, genetic engineering, and functional genomics. Organized into a single volume for the first time, this landmark work covers every major aspect of floral scent research .