Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Gottig is active.

Publication


Featured researches published by Natalia Gottig.


PLOS ONE | 2009

A Filamentous Hemagglutinin-Like Protein of Xanthomonas axonopodis pv. citri, the Phytopathogen Responsible for Citrus Canker, Is Involved in Bacterial Virulence

Natalia Gottig; Betiana S. Garavaglia; Cecilia Garofalo; Elena G. Orellano; Jorgelina Ottado

Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker has a number of protein secretion systems and among them, at least one type V protein secretion system belonging to the two-partner secretion pathway. This system is mainly associated to the translocation of large proteins such as adhesins to the outer membrane of several pathogens. Xanthomonas axonopodis pv. citri possess a filamentous hemagglutinin-like protein in close vicinity to its putative transporter protein, XacFhaB and XacFhaC, respectively. Expression analysis indicated that XacFhaB was induced in planta during plant-pathogen interaction. By mutation analysis of XacFhaB and XacFhaC genes we determined that XacFhaB is involved in virulence both in epiphytic and wound inoculations, displaying more dispersed and fewer canker lesions. Unexpectedly, the XacFhaC mutant in the transporter protein produced an intermediate virulence phenotype resembling wild type infection, suggesting that XacFhaB could be secreted by another partner different from XacFhaC. Moreover, XacFhaB mutants showed a general lack of adhesion and were affected in leaf surface attachment and biofilm formation. In agreement with the in planta phenotype, adhesin lacking cells moved faster in swarming plates. Since no hyperflagellation phenotype was observed in this bacteria, the faster movement may be attributed to the lack of cell-to-cell aggregation. Moreover, XacFhaB mutants secreted more exopolysaccharide that in turn may facilitate its motility. Our results suggest that this hemagglutinin-like protein is required for tissue colonization being mainly involved in surface attachment and biofilm formation, and that plant tissue attachment and cell-to-cell aggregation are dependent on the coordinated action of adhesin molecules and exopolysaccharides.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis.

Natalia Gottig; Betiana S. Garavaglia; Lucas D. Daurelio; Alex J. Valentine; Chris Gehring; Elena G. Orellano; Jorgelina Ottado

Plant natriuretic peptides (PNPs) are a class of extracellular, systemically mobile molecules that elicit a number of plant responses important in homeostasis and growth. The bacterial citrus pathogen, Xanthomonas axonopodis pv. citri, also contains a gene encoding a PNP-like protein, XacPNP, that shares significant sequence similarity and identical domain organization with plant PNPs but has no homologues in other bacteria. We have expressed and purified XacPNP and demonstrated that the bacterial protein alters physiological responses including stomatal opening in plants. Although XacPNP is not expressed under standard nutrient rich culture conditions, it is strongly induced under conditions that mimic the nutrient poor intercellular apoplastic environment of leaves, as well as in infected tissue, suggesting that XacPNP transcription can respond to the host environment. To characterize the role of XacPNP during bacterial infection, we constructed a XacPNP deletion mutant. The lesions caused by this mutant were more necrotic than those observed with the wild-type, and bacterial cell death occurred earlier in the mutant. Moreover, when we expressed XacPNP in Xanthomonas axonopodis pv. vesicatoria, the transgenic bacteria caused less necrotic lesions in the host than the wild-type. In conclusion, we present evidence that a plant-like bacterial PNP can enable a plant pathogen to modify host responses to create conditions favorable to its own survival.


Journal of Biological Chemistry | 2006

Active and passive mechanisms drive secretory granule biogenesis during differentiation of the intestinal parasite Giardia lamblia.

Natalia Gottig; Eliana V. Elias; Rodrigo Quiroga; María J. Nores; Alberto J. Solari; María C. Touz; Hugo D. Luján

The parasitic protozoan Giardia lamblia undergoes important changes to survive outside the intestine of its host by differentiating into infective cysts. During encystation, three cyst wall proteins (CWPs) are specifically expressed and concentrated within encystation-specific secretory vesicles (ESVs). ESVs are electron-dense secretory granules that transport CWPs before exocytosis and extracellular polymerization into a rigid cyst wall. Because secretory granules form at the trans-Golgi in higher eukaryotes and because Giardia lacks an identifiable Golgi apparatus, the aim of this work was to investigate the molecular basis of secretory granule formation in Giardia by examining the role of CWPs in this process. Although CWP1, CWP2, and CWP3 are structurally similar in their 26-kDa leucine-rich overlapping region, CWP2 is distinguished by the presence of a 13-kDa C-terminal basic extension. In non-encysting trophozoites, expression of different CWP chimeras showed that the CWP2 basic extension is necessary for biogenesis of ESVs, which occurs in a compartment derived from the endoplasmic reticulum. Nevertheless, the CWP2 basic extension per se is insufficient to trigger ESV formation, indicating that other domains in CWPs are also required. We found that CWP2 is a key regulator of ESV formation by acting as an aggregation factor for CWP1 and CWP3 through interactions mediated by its conserved region. CWP2 also acts as a ligand for sorting via its C-terminal basic extension. These findings show that granule biogenesis requires complex interactions among granule components and membrane receptors.


BMC Plant Biology | 2010

A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host.

Betiana S. Garavaglia; Ludivine Thomas; Tamara Zimaro; Natalia Gottig; Lucas D. Daurelio; Bongani K. Ndimba; Elena G. Orellano; Jorgelina Ottado; Christoph A. Gehring

BackgroundPlant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival.ResultsHere we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 α subunit, maturase K, and α- and β-tubulin.ConclusionsWe demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.


PLOS ONE | 2010

A Eukaryotic-Acquired Gene by a Biotrophic Phytopathogen Allows Prolonged Survival on the Host by Counteracting the Shut-Down of Plant Photosynthesis

Betiana S. Garavaglia; Ludivine Thomas; Natalia Gottig; Germán Dunger; Cecilia Garofalo; Lucas D. Daurelio; Bongani K. Ndimba; Elena G. Orellano; Christoph A. Gehring; Jorgelina Ottado

Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.


Journal of Biological Chemistry | 2008

Characterization of SNAREs Determines the Absence of a Typical Golgi Apparatus in the Ancient Eukaryote Giardia lamblia

Eliana V. Elias; Rodrigo Quiroga; Natalia Gottig; Hideki Nakanishi; Theodore E. Nash; Aaron M. Neiman; Hugo D. Luján

Giardia is a eukaryotic protozoal parasite with unusual characteristics, such as the absence of a morphologically evident Golgi apparatus. Although both constitutive and regulated pathways for protein secretion are evident in Giardia, little is known about the mechanisms involved in vesicular docking and fusion. In higher eukaryotes, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) of the vesicle-associated membrane protein and syntaxin families play essential roles in these processes. In this work we identified and characterized genes for 17 SNAREs in Giardia to define the minimal set of subcellular organelles present during growth and encystation, in particular the presence or not of a Golgi apparatus. Expression and localization of all Giardia SNAREs demonstrate their presence in distinct subcellular compartments, which may represent the extent of the endomembrane system in eukaryotes. Remarkably, Giardia SNAREs, homologous to Golgi SNAREs from other organisms, do not allow the detection of a typical Golgi apparatus in either proliferating or differentiating trophozoites. However, some features of the Golgi, such as the packaging and sorting function, seem to be performed by the endoplasmic reticulum and/or the nuclear envelope. Moreover, depletion of individual genes demonstrated that several SNAREs are essential for viability, whereas others are dispensable. Thus, Giardia requires a smaller number of SNAREs compared with other eukaryotes to accomplish all of the vesicle trafficking events that are critical for the growth and differentiation of this important human pathogen.


BMC Microbiology | 2013

Insights into xanthomonas axonopodis pv. citri biofilm through proteomics.

Tamara Zimaro; Ludivine Thomas; Claudius Marondedze; Betiana S. Garavaglia; Christoph A. Gehring; Jorgelina Ottado; Natalia Gottig

BackgroundXanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms.ResultsIn order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study.ConclusionsDifferentially expressed proteins are enriched in functional categories. Firstly, proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.


Communicative & Integrative Biology | 2010

Shedding light on the role of photosynthesis in pathogen colonization and host defense.

Betiana S. Garavaglia; Ludivine Thomas; Natalia Gottig; Tamara Zimaro; Cecilia Garofalo; Christoph A. Gehring; Jorgelina Ottado

The role of photosynthesis in plant defense is a fundamental question awaiting further molecular and physiological elucidation. To this end we investigated host responses to infection with the bacterial pathogen Xanthomonas axonopodis pv. citri, the pathogen responsible for citrus canker. This pathogen encodes a plant-like natriuretic peptide (XacPNP) that is expressed specifically during the infection process and prevents deterioration of the physiological condition of the infected tissue. Proteomic assays of citrus leaves infected with a XacPNP deletion mutant (∆XacPNP) resulted in a major reduction in photosynthetic proteins such as Rubisco, Rubisco activase and ATP synthase as a compared with infection with wild type bacteria. In contrast, infiltration of citrus leaves with recombinant XacPNP caused an increase in these host proteins and a concomitant increase in photosynthetic efficiency as measured by chlorophyll fluorescence assays. Reversion of the reduction in photosynthetic efficiency in citrus leaves infected with ∆XacPNP was achieved by the application of XacPNP or Citrus sinensis PNP lending support to a case of molecular mimicry. Finally, given that ∆XacPNP infection is less successful than infection with the wild type, it appears that reducing photosynthesis is an effective plant defense mechanism against biotrophic pathogens.


Molecular Plant Pathology | 2012

Contribution of a harpin protein from Xanthomonas axonopodis pv. citri to pathogen virulence

Germán G. Sgro; Florencia A. Ficarra; Germán Dunger; Telma E. Scarpeci; Estela M. Valle; Adriana Cortadi; Elena G. Orellano; Natalia Gottig; Jorgelina Ottado

Xanthomonas axonopodis pv. citri (Xac), the bacterium that causes citrus canker, contains a gene in the hrp [for hypersensitive response (HR) and pathogenicity] cluster that encodes a harpin protein called Hpa1. Hpa1 produced HR in the nonhost plants tobacco, pepper and Arabidopsis, whereas, in the host plant citrus, it elicited a weak defence response with no visible phenotype. Co-infiltrations of Xac with or without the recombinant Hpa1 protein in citrus leaves produced a larger number of cankers in the presence of the protein. To characterize the effect of Hpa1 during the disease, an XacΔhpa1 mutant was constructed, and infiltration of this mutant caused a smaller number of cankers. In addition, the lack of Hpa1 hindered bacterial aggregation both in solution and in planta. Analysis of citrus leaves infiltrated with Hpa1 revealed alterations in mesophyll morphology caused by the presence of cavitations and crystal idioblasts, suggesting the binding of the harpin to plant membranes and the elicitation of signalling cascades. Overall, these results suggest that, even though Hpa1 elicits the defence response in nonhost plants and, to a lesser extent, in host plants, its main roles in citrus canker are to alter leaf mesophyll structure and to aggregate bacterial cells, and thus increase virulence and pathogen fitness. We expressed the N-terminal and C-terminal regions and found that, although both regions elicited HR in nonhost plants, only the N-terminal region showed increased virulence and bacterial aggregation, supporting the role of this region of the protein as the main active domain.


Journal of Experimental Botany | 2015

The dual nature of trehalose in citrus canker disease: a virulence factor for Xanthomonas citri subsp. citri and a trigger for plant defence responses

Ainelén Piazza; Tamara Zimaro; Betiana S. Garavaglia; Florencia A. Ficarra; Ludivine Thomas; Claudius Marondedze; Regina Feil; John E. Lunn; Chris Gehring; Jorgelina Ottado; Natalia Gottig

Highlight: Trehalose is a double-edged sword for both partners in the citrus–Xanthomonas interaction, as it is necessary for bacterial survival but also triggers citrus defence responses.

Collaboration


Dive into the Natalia Gottig's collaboration.

Top Co-Authors

Avatar

Jorgelina Ottado

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Betiana S. Garavaglia

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Elena G. Orellano

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Cecilia Garofalo

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Florencia A. Ficarra

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Tamara Zimaro

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Christoph A. Gehring

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Lucas D. Daurelio

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Carolina Grandellis

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Eliana V. Elias

Catholic University of Cordoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge