Natalia Kurepina
University of Medicine and Dentistry of New Jersey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalia Kurepina.
The Journal of Infectious Diseases | 2009
Keren Middelkoop; Linda-Gail Bekker; Barun Mathema; Elena Shashkina; Natalia Kurepina; Andrew Whitelaw; Dorothy Fallows; Carl Morrow; Barry N. Kreiswirth; Gilla Kaplan; Robin Wood
To explore the relationship between human immunodeficiency virus (HIV) and Mycobacterium tuberculosis genotypes, we performed IS6110-based restriction fragment-length polymorphism analysis on M. tuberculosis culture specimens from patients with smear-positive tuberculosis in a periurban community in South Africa from 2001 through 2005. Among 151 isolates, 95 strains were identified within 26 families, with 54% clustering. HIV status was associated with W-Beijing strains (P = .009) but not with clustering per se. The high frequency of clustering suggests ongoing transmission in both HIV-negative and HIV-positive individuals in this community. The strong association between W-Beijing and HIV infection may have important implications for tuberculosis control.
Journal of Biological Chemistry | 2014
Arkady Mustaev; Muhammad Malik; Xilin Zhao; Natalia Kurepina; Gan Luan; Lisa M. Oppegard; Hiroshi Hiasa; Kevin R. Marks; Robert J. Kerns; James M. Berger; Karl Drlica
Background: X-ray crystal structures of fluoroquinolone-gyrase-DNA complexes reveal a single drug-binding mode. Results: A ciprofloxacin derivative with a chloroacetyl moiety at the C-7 end cross-linked with cysteine substitutions in both GyrA and GyrB that were 17 Å apart. Conclusion: Cleaved complexes containing gyrase have two fluoroquinolone-binding modes. Significance: The additional drug-binding mode provides new ways to investigate inhibitor-topoisomerase interactions. DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.
Journal of Clinical Microbiology | 2011
Christian Massire; Cristina Ivy; Robert Lovari; Natalia Kurepina; Haijing Li; Lawrence B. Blyn; Steven A. Hofstadler; George Khechinashvili; Charles W. Stratton; Rangarajan Sampath; Yue Tang; David J. Ecker; Barry N. Kreiswirth
ABSTRACT Mycobacterium tuberculosis that is resistant to both isoniazid (INH) and rifampin (RIF) is spreading. It has become a public health problem in part because the standard culture methods used to determine the appropriate treatment regimen for patients often take months following the presumptive diagnosis of tuberculosis. Furthermore, the misidentification of nontuberculosis mycobacteria (NTM) in patients presumably suffering from tuberculosis results in additional human and health care costs. The mechanisms of resistance for several drugs used to treat Mycobacterium tuberculosis are well understood and therefore should be amenable to determination by rapid molecular methods. We describe here the use of PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) in an assay that simultaneously determines INH and RIF resistance in Mycobacterium tuberculosis and identifies and determines the species of NTMs. The assay panel included 16 primer pairs in eight multiplexed reactions and was validated using a collection of 1,340 DNA samples from cultured specimens collected in the New York City area, the Republic of Georgia, and South Africa. Compared with phenotypic data, the PCR/ESI-MS assay had 89.3% sensitivity and 95.8% specificity in the determination of INH resistance and 96.3% sensitivity and 98.6% specificity in the determination of RIF resistance. Based on a set of 264 previously characterized liquid culture specimens, the PCR/ESI-MS method had 97.0% sensitivity and 99.9% specificity for determination of NTM identity. The assay also provides information on ethambutol, fluoroquinolone, and diarylquinoline resistance and lineage-specific polymorphisms, to yield highly discriminative digital signatures potentially suitable for epidemiology tracking.
Journal of Applied Microbiology | 2013
Natalia Kurepina; Barry N. Kreiswirth; Arkady Mustaev
The aim of this study was to test the growth inhibition activity of isothiocyanates (ITCs), defence compounds of plants, against common human microbial pathogens.
Antimicrobial Agents and Chemotherapy | 2016
Kelly Stinson; Natalia Kurepina; Amour Venter; Mamoru Fujiwara; Masanori Kawasaki; Juliano Timm; Elena Shashkina; Barry N. Kreiswirth; Yongge Liu; Makoto Matsumoto; Lawrence J. Geiter
ABSTRACT The increasing global burden of multidrug-resistant tuberculosis (MDR-TB) requires reliable drug susceptibility testing that accurately characterizes susceptibility and resistance of pathogenic bacteria to effectively treat patients with this deadly disease. Delamanid is an anti-TB agent first approved in the European Union in 2014 for the treatment of pulmonary MDR-TB in adults. Using the agar proportion method, delamanid MIC was determined for 460 isolates: 316 from patients enrolled in a phase 2 global clinical trial, 76 from two phase 2 early bactericidal activity trials conducted in South Africa, and 68 isolates obtained outside clinical trials (45 from Japanese patients and 23 from South African patients). With the exception of two isolates, MICs ranged from 0.001 to 0.05 μg/ml, resulting in an MIC50 of 0.004 μg/ml and an MIC90 of 0.012 μg/ml. Various degrees of resistance to other anti-TB drugs did not affect the distribution of MICs, nor did origin of isolates from regions/countries other than South Africa. A critical concentration/breakpoint of 0.2 μg/ml can be used to define susceptible and resistant isolates based on the distribution of MICs and available pharmacokinetic data. Thus, clinical isolates from delamanid-naive patients with tuberculosis have a very low MIC for delamanid and baseline resistance is rare, demonstrating the potential potency of delamanid and supporting its use in an optimized background treatment regimen for MDR-TB.
Journal of Clinical Microbiology | 2012
Lisa V. Adams; Barry N. Kreiswirth; Robert D. Arbeit; Hanna Soini; Lillian Mtei; Mecky Matee; Muhammad Bakari; Timothy Lahey; Wendy Wieland-Alter; Elena Shashkina; Natalia Kurepina; Jeffrey Driscoll; Kisali Pallangyo; C. Robert Horsburgh; C. Fordham von Reyn
ABSTRACT Molecular typing of Mycobacterium tuberculosis can be used to elucidate the epidemiology of tuberculosis, including the rates of clustering, the frequency of polyclonal disease, and the distribution of genotypic families. We performed IS6110 typing and spoligotyping on M. tuberculosis strains isolated from HIV-infected subjects at baseline or during follow-up in the DarDar Trial in Tanzania and on selected community isolates. Clustering occurred in 203 (74%) of 275 subjects: 124 (80%) of 155 HIV-infected subjects with baseline isolates, 56 (69%) of 81 HIV-infected subjects with endpoint isolates, and 23 (59%) of 39 community controls. Overall, 113 (41%) subjects had an isolate representing the East Indian “GD” family. The rate of clustering was similar among vaccine and placebo recipients and among subjects with or without cellular immune responses to mycobacterial antigens. Polyclonal disease was detected in 6 (43%) of 14 patients with multiple specimens typed. Most cases of HIV-associated tuberculosis among subjects from this study in Dar es Salaam resulted from recently acquired infection. Polyclonal infection was detected and isolates representing the East Indian GD strain family were the most common.
Antimicrobial Agents and Chemotherapy | 2012
Muhammad Malik; Kalyan D. Chavda; Xilin Zhao; Nirali Shah; Syed Hussain; Natalia Kurepina; Barry N. Kreiswirth; Robert J. Kerns; Karl Drlica
ABSTRACT An agar plate assay was developed for detecting the induction of drug-resistant mycobacterial mutants during exposure to inhibitors of DNA gyrase. When Mycobacterium smegmatis on drug-containing agar, resistant colonies arose over a period of 2 weeks. A recA deficiency reduced mutant recovery, consistent with involvement of the SOS response in mutant induction. The C-8-methoxy compounds gatifloxacin and moxifloxacin allowed the recovery of fewer resistant mutants than either ciprofloxacin or levofloxacin when present at the same multiple of the MIC; a quinolone-like 8-methoxy-quinazoline-2,4-dione was more effective at restricting the emergence of resistant mutants than its cognate fluoroquinolone. Thus, the structure of fluoroquinolone-like compounds affects mutant recovery. A spontaneous mutator mutant of M. smegmatis, obtained by growth in medium containing both isoniazid and rifampin, increased mutant induction during exposure to ciprofloxacin. Moreover, the mutator increased the size of spontaneous resistant mutant subpopulations, as detected by population analysis. Induction of ciprofloxacin resistance was also observed with Mycobacterium tuberculosis H37Rv. When measured with clinical isolates, no difference in mutant recovery was observed between multidrug-resistant (MDR) and pansusceptible isolates. This finding is consistent with at least some MDR isolates of M. tuberculosis lacking mutators detectable by the agar plate assay. Collectively, the data indicate that the use of fluoroquinolones against tuberculosis may induce resistance and that the choice of quinolone may be important for restricting the recovery of induced mutants.
Journal of Clinical Microbiology | 2016
Xiaohong Zeng; Hui Li; Rongrong Zheng; Natalia Kurepina; Barry N. Kreiswirth; Xilin Zhao; Ye Xu; Qingge Li
ABSTRACT We report here a ligation-based spoligotyping that can identify unamplified spacers in membrane-based spoligotyping due to asymmetric insertion of IS6110 in the direct repeat locus. Our typing yielded 84.4% (411/487) concordance with traditional typing and 100% (487/487) accuracy when confirmed by DNA sequencing.
bioinformatics and biomedicine | 2011
Cagri Ozcaglar; Amina Shabbeer; Natalia Kurepina; Bülent Yener; Kristin P. Bennett
Biomarkers of Mycobacterium tuberculosis complex (MTBC) mutate over time. Among the biomarkers of MTBC, spacer oligonucleotide type (spoligotype) and Mycobacterium Interspersed Repetitive Unit (MIRU) patterns are commonly used to genotype clinical MTBC strains. In this study, we present an evolution model of spoligotype rearrangements using MIRU patterns to disambiguate the ancestors of spoligotypes, in a large patient dataset from the United States Centers for Disease Control and Prevention (CDC). Based on the contiguous deletion assumption and rare observation of convergent evolution, we first generate the most parsimonious forest of spoligotypes, called a spoligo forest, using three genetic distance measures. An analysis of topological attributes of the spoligo forest and number of variations at the direct repeat (DR) locus of each strain reveals interesting properties of deletions in the DR region. First, we compare our mutation model to existing mutation models of spoligotypes and find that our mutation model produces as many within-lineage mutation events as other models, with slightly higher segregation accuracy. Second, based on our mutation model, the number of descendant spoligotypes follows a power law distribution. Third, contrary to prior studies, the power law distribution does not plausibly fit to the mutation length frequency. Finally, the total number of mutation events at consecutive DR loci follows a bimodal distribution, which results in accumulation of shorter deletions in the DR region. The two modes are spacers 13 and 40, which are hotspots for chromosomal rearrangements. The change point in the bimodal distribution is spacer 34, which is absent in most MTBC strains. This bimodal separation results in accumulation of shorter deletions, which explains why a power law distribution is not a plausible fit to the mutation length frequency.
Archive | 2007
Arkady Mustaev; Natalia Kurepina