Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Lawrence is active.

Publication


Featured researches published by Natalia Lawrence.


Biological Psychiatry | 2004

Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression

Natalia Lawrence; A Williams; Simon Surguladze; Vincent Giampietro; Michael Brammer; Christopher Andrew; Sophia Frangou; Christine Ecker; Mary L. Phillips

BACKGROUND Bipolar disorder (BD) is characterised by abnormalities in mood and emotional processing, but the neural correlates of these, their relationship to depressive symptoms, and the similarities with deficits in major depressive disorder (MDD) remain unclear. We compared responses within subcortical and prefrontal cortical regions to emotionally salient material in patients with BP and MDD using functional magnetic resonance imaging. METHODS We measured neural responses to mild and intense expressions of fear, happiness, and sadness in euthymic and depressed BD patients, healthy control subjects, and depressed MDD patients. RESULTS Bipolar disorder patients demonstrated increased subcortical (ventral striatal, thalamic, hippocampal) and ventral prefrontal cortical responses particularly to mild and intense fear, mild happy, and mild sad expressions. Healthy control subjects demonstrated increased subcortical responses to intense happy and mild fear, and increased dorsal prefrontal cortical responses to intense sad expressions. Overall, MDD patients showed diminished neural responses to all emotional expressions except mild sadness. Depression severity correlated positively with hippocampal response to mild sadness in both patient groups. CONCLUSIONS Compared with healthy controls and MDD patients, BD patients demonstrated increased subcortical and ventral prefrontal cortical responses to both positive and negative emotional expressions.


Neuron | 2002

Cognitive mechanisms of nicotine on visual attention

Natalia Lawrence; Thomas J. Ross; Elliot A. Stein

Understanding nicotines neurobiological and cognitive mechanisms may help explain both its addictive properties and potential therapeutic applications. As such, functional MRI was used to determine the neural substrates of nicotines effects on a sustained attention (rapid visual information-processing) task. Performance was associated with activation in a fronto-parietal-thalamic network in both smokers and nonsmokers. Along with subtle behavioral deficits, mildly abstinent smokers showed less task-induced brain activation in the parietal cortex and caudate than did nonsmokers. Transdermal nicotine replacement improved task performance in smokers and increased task-induced brain activation in the parietal cortex, thalamus, and caudate, while nicotine induced a generalized increase in occipital cortex activity. These data suggest that nicotine improves attention in smokers by enhancing activation in areas traditionally associated with visual attention, arousal, and motor activation.


Journal of Cognitive Neuroscience | 2003

Multiple Neuronal Networks Mediate Sustained Attention

Natalia Lawrence; Thomas J. Ross; Raymond G. Hoffmann; Hugh Garavan; Elliot A. Stein

Sustained attention deficits occur in several neuropsychiatric disorders. However, the underlying neurobiological mechanisms are still incompletely understood. To that end, functional MRI was used to investigate the neural substrates of sustained attention (vigilance) using the rapid visual information processing (RVIP) task in 25 healthy volunteers. In order to better understand the neural networks underlying attentional abilities, brain regions where task-induced activation correlated with task performance were identified. Performance of the RVIP task activated a network of frontal, parietal, occipital, thalamic, and cerebellar regions. Deactivation during task performance was seen in the anterior and posterior cingulate, insula, and the left temporal and parahippocampal gyrus. Good task performance, as defined by better detection of target stimuli, was correlated with enhanced activation in predominantly right fronto-parietal regions and with decreased activation in predominantly left temporo-limbic and cingulate areas. Factor analysis revealed that these performance-correlated regions were grouped into two separate networks comprised of positively activated and negatively activated intercorrelated regions. Poor performers failed to significantly activate or deactivate these networks, whereas good performers either activated the positive or deactivated the negative network, or did both. The fact that both increased activation of task-specific areas and increased deactivation of task-irrelevant areas mediate cognitive functions underlying good RVIP task performance suggests two independent circuits, presumably reflecting different cognitive strategies, can be recruited to perform this vigilance task.


Neuropsychology (journal) | 2006

Decision making and set shifting impairments are associated with distinct symptom dimensions in obsessive-compulsive disorder

Natalia Lawrence; Sarah Wooderson; David Mataix-Cols; Rhodri David; Anne Speckens; Mary L. Phillips

Obsessive-compulsive disorder (OCD) is clinically heterogeneous. The authors examined how specific OCD symptom dimensions were related to neuropsychological functions using multiple regression analyses. A total of 39 OCD patients and 40 controls completed the Iowa Gambling Task (IGT; A. Bechara, A. R. Damasio, H. Damasio, & S. W. Anderson, 1994), which is a test of decision making, and the Wisconsin Card Sorting Test (R. K. Heaton, 1981), which is a test of set shifting. OCD patients and controls showed comparable decision making. However, patients with prominent hoarding symptoms showed impaired decision making on the IGT as well as reduced skin conductance responses. OCD patients had poorer set shifting abilities than controls, and symmetry/ordering symptoms were negatively associated with set shifting. These results help explain previous inconsistent findings in neuropsychological research in OCD and support recent neuroimaging data showing dissociable neural mechanisms involved in mediating the different OCD symptom dimensions.


Cerebral Cortex | 2009

Distinct Roles of Prefrontal Cortical Subregions in the Iowa Gambling Task

Natalia Lawrence; Fabrice Jollant; Owen O'Daly; Fernando Zelaya; Mary L. Phillips

The Iowa Gambling Task (IGT) assesses decision-making under initially ambiguous conditions. Neuropsychological and neuroimaging data suggest, albeit inconsistently, the involvement of numerous prefrontal cortical regions in task performance. To clarify the contributions of different prefrontal regions, we developed and validated a version of the IGT specifically modified for event-related functional magnetic resonance imaging. General decision-making in healthy males elicited activation in the ventromedial prefrontal cortex. Choices from disadvantageous versus advantageous card decks produced activation in the medial frontal gyrus, lateral orbitofrontal cortex (OFC), and insula. Moreover, activation in these regions, along with the pre-supplementary motor area (pre-SMA) and secondary somatosensory cortex, was positively associated with task performance. Lateral OFC and pre-SMA activation also showed a significant modulation over time, suggesting a role in learning. Striato-thalamic regions responded to wins more than losses. These results both replicate and add to previous findings and help to reconcile inconsistencies in neuropsychological data. They reveal that deciding advantageously under initially ambiguous conditions may require both continuous and dynamic processes involving both the ventral and dorsal prefrontal cortex.


NeuroImage | 2010

Decreased activation of lateral orbitofrontal cortex during risky choices under uncertainty is associated with disadvantageous decision-making and suicidal behavior

Fabrice Jollant; Natalia Lawrence; Emilie Olié; Owen O'Daly; Alain Malafosse; Philippe Courtet; Mary L. Phillips

Decision-making impairment has been linked to orbitofrontal cortex lesions and to different disorders including substance abuse, aggression and suicidal behavior. Understanding the neurocognitive mechanisms of these impairments could facilitate the development of effective treatments. In the current study, we aimed to explore the neural and cognitive basis of poor decision-making ability associated with the vulnerability to suicidal behavior, a public health issue in most western countries. Twenty-five not currently depressed male patients, 13 of whom had a history of suicidal acts (suicide attempters) and 12 of whom had none (affective controls), performed an adapted version of the Iowa Gambling Task during functional Magnetic Resonance Imaging. Task-related functional Regions-of-Interest were independently defined in 15 male healthy controls performing the same task (Lawrence et al., 2009). In comparison to affective controls, suicide attempters showed 1) poorer performance on the gambling task 2) decreased activation during risky relative to safe choices in left lateral orbitofrontal and occipital cortices 3) no difference for the contrast between wins and losses. Altered processing of risk under conditions of uncertainty, associated with left lateral orbitofrontal cortex dysfunction, could explain the decision-making deficits observed in suicide attempters. These impaired cognitive and neural processes may represent future predictive markers and therapeutic targets in a field where identification of those at risk is poor and specific treatments are lacking. These results also add to our growing understanding of the role of the orbitofrontal cortex in decision-making and psychopathology.


Journal of The International Neuropsychological Society | 2007

An investigation of decision making in anorexia nervosa using the Iowa Gambling Task and skin conductance measurements

Kate Tchanturia; Pei-Chi Liao; Rudolf Uher; Natalia Lawrence; Janet Treasure; Iain C. Campbell

The objective of this study is to determine (a) if decision making ability is impaired in patients with anorexia nervosa (AN) and in people with good recovery from AN and (b) whether any impairment in decision making is associated with alterations in skin conductance responses (SCR). Patients with AN (n = 29), healthy controls comparable in age and IQ (HC, n = 29), and women long term recovered from AN (n = 14), completed the Iowa Gambling Task (IGT) while their SCR were measured. AN patients performed poorly in the IGT compared to the HC and to the recovered AN participants. AN patients had decreased anticipatory SCR prior to choosing cards and reduced SCR after losses compared to HC. IGT performance and the SCR of recovered AN participants did not differ from the HC. Decision making ability is impaired in AN. It is associated with a significantly attenuated SCR. Neither of these features are found in recovered AN. The association between impaired decision making ability and a decreased autonomic response is consistent with the predictions of the Somatic Marker Hypothesis.


NeuroImage | 2010

Neural response to specific components of fearful faces in healthy and schizophrenic adults

Joaquim Radua; Mary L. Phillips; Tamara Russell; Natalia Lawrence; Nicolette Marshall; Sridevi Kalidindi; Wissam El-Hage; Colm McDonald; Vincent Giampietro; Michael Brammer; Anthony S. David; Simon Surguladze

Perception of fearful faces is associated with functional activation of cortico-limbic structures, which has been found altered in individuals with psychiatric disorders such as schizophrenia, autism and major depression. The objective of this study was to isolate the brain response to the features of standardized fearful faces by incorporating principal component analysis (PCA) into the analysis of neuroimaging data of healthy volunteers and individuals with schizophrenia. At the first stage, the visual characteristics of morphed fearful facial expressions (FEEST, Young et al., 2002) were classified with PCA, which produced seven orthogonal factors, with some of them related to emotionally salient facial features (eyes, mouth, brows) and others reflecting non-salient facial features. Subsequently, these PCA-based factors were included into the functional magnetic resonance imaging (fMRI) analysis of 63 healthy volunteers and 32 individuals with schizophrenia performing a task that involved implicit processing of FEEST stimuli. In healthy volunteers, significant neural response was found to visual characteristics of eyes, mouth or brows. In individuals with schizophrenia, PCA-based analysis enabled us to identify several significant clusters of activation that were not detected by the standard approach. These clusters were implicated in processing of visual and emotional information and were attributable to the perception of eyes and brows. PCA-based analysis could be useful in isolating brain response to salient facial features in psychiatric populations.


Molecular Psychiatry | 2009

To discard or not to discard: the neural basis of hoarding symptoms in obsessive-compulsive disorder

Suk Kyoon An; David Mataix-Cols; Natalia Lawrence; Sarah Wooderson; Vincent Giampietro; Anne Speckens; Michael Brammer; Mary L. Phillips

Preliminary neuroimaging studies suggest that patients with the ‘compulsive hoarding syndrome’ may be a neurobiologically distinct variant of obsessive-compulsive disorder (OCD) but further research is needed. A total of 29 OCD patients (13 with and 16 without prominent hoarding symptoms) and 21 healthy controls of both sexes participated in two functional magnetic resonance imaging experiments consisting of the provocation of hoarding-related and symptom-unrelated (aversive control) anxiety. In response to the hoarding-related (but not symptom-unrelated) anxiety provocation, OCD patients with prominent hoarding symptoms showed greater activation in bilateral anterior ventromedial prefrontal cortex (VMPFC) than patients without hoarding symptoms and healthy controls. In the entire patient group (n=29), provoked anxiety was positively correlated with activation in a frontolimbic network that included the anterior VMPFC, medial temporal structures, thalamus and sensorimotor cortex. Negative correlations were observed in the left dorsal anterior cingulate gyrus, bilateral temporal cortex, bilateral dorsolateral/medial prefrontal regions, basal ganglia and parieto-occipital regions. These results were independent from the effects of age, sex, level of education, state anxiety, depression, comorbidity and use of medication. The findings are consistent with the animal and lesion literature and several landmark clinical features of compulsive hoarding, particularly decision-making difficulties. Whether the results are generalizable to hoarders who do not meet criteria for OCD remains to be investigated.


Molecular Psychiatry | 2016

Subcortical volumetric abnormalities in bipolar disorder.

Derrek P. Hibar; Lars T. Westlye; T G M van Erp; Jerod Rasmussen; Cassandra D. Leonardo; Joshua Faskowitz; Unn K. Haukvik; Cecilie B. Hartberg; Nhat Trung Doan; Ingrid Agartz; Anders M. Dale; Oliver Gruber; Bernd Krämer; Sarah Trost; Benny Liberg; Christoph Abé; C J Ekman; Martin Ingvar; Mikael Landén; Scott C. Fears; Nelson B. Freimer; Carrie E. Bearden; Emma Sprooten; David C. Glahn; Godfrey D. Pearlson; Louise Emsell; Joanne Kenney; C. Scanlon; Colm McDonald; Dara M. Cannon

Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case–control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen’s d=−0.232; P=3.50 × 10−7) and thalamus (d=−0.148; P=4.27 × 10−3) and enlarged lateral ventricles (d=−0.260; P=3.93 × 10−5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.

Collaboration


Dive into the Natalia Lawrence's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Speckens

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Jollant

Douglas Mental Health University Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge