Natália Martínková
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natália Martínková.
PLOS ONE | 2010
Natália Martínková; Peter Bačkor; Tomáš Bartonička; Pavla Blažková; Jaroslav Červený; Lukáš Falteisek; Jiří Gaisler; Vladimír Hanzal; Daniel Horáček; Zdeněk Hubálek; Helena Jahelková; Miroslav Kolařík; L'uboš Korytár; Alena Kubátová; Blanka Lehotská; Roman Lehotský; Radek Lučan; Ondřej Májek; Jan Matějů; Zdeněk Řehák; Jiří Šafář; Přemysl Tájek; Emil Tkadlec; Marcel Uhrin; Josef Wagner; Dita Weinfurtová; Jan Zima; Jan Zukal; Ivan Horáček
Background White-nose syndrome is a disease of hibernating insectivorous bats associated with the fungus Geomyces destructans. It first appeared in North America in 2006, where over a million bats died since then. In Europe, G. destructans was first identified in France in 2009. Its distribution, infection dynamics, and effects on hibernating bats in Europe are largely unknown. Methodology/Principal Findings We screened hibernacula in the Czech Republic and Slovakia for the presence of the fungus during the winter seasons of 2008/2009 and 2009/2010. In winter 2009/2010, we found infected bats in 76 out of 98 surveyed sites, in which the majority had been previously negative. A photographic record of over 6000 hibernating bats, taken since 1994, revealed bats with fungal growths since 1995; however, the incidence of such bats increased in Myotis myotis from 2% in 2007 to 14% by 2010. Microscopic, cultivation and molecular genetic evaluations confirmed the identity of the recently sampled fungus as G. destructans, and demonstrated its continuous distribution in the studied area. At the end of the hibernation season we recorded pathologic changes in the skin of the affected bats, from which the fungus was isolated. We registered no mass mortality caused by the fungus, and the recorded population decline in the last two years of the most affected species, M. myotis, is within the population trend prediction interval. Conclusions/Significance G. destructans was found to be widespread in the Czech Republic and Slovakia, with an epizootic incidence in bats during the most recent years. Further development of the situation urgently requires a detailed pan-European monitoring scheme.
Molecular Ecology | 2013
Natália Martínková; Ross Barnett; Thomas Cucchi; Rahel Struchen; Marine Pascal; Michel Pascal; Martin C. Fischer; Thomas Higham; Selina Brace; Simon Y. W. Ho; Jean-Pierre Quéré; Paul O'Higgins; Laurent Excoffier; Gerald Heckel; A. Rus Hoelzel; Keith Dobney; Jeremy B. Searle
Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic ‘ark’. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land‐use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island.
Journal of Wildlife Diseases | 2012
Jiri Pikula; Hana Bandouchova; Ladislav Novotný; Carol U. Meteyer; Jan Zukal; Nancy R. Irwin; Jan Zima; Natália Martínková
White-nose syndrome, associated with the fungal skin infection geomycosis, caused regional population collapse in bats in North America. Our results, based on histopathology, show the presence of white-nose syndrome in Europe. Dermatohistopathology on two bats (Myotis myotis) found dead in March 2010 with geomycosis in the Czech Republic had characteristics resembling Geomyces destructans infection in bats confirmed with white-nose syndrome in US hibernacula. In addition, a live M. myotis, biopsied for histopathology during hibernation in April 2011, had typical fungal infection with cupping erosion and invasion of muzzle skin diagnostic for white-nose syndrome and conidiospores identical to G. destructans that were genetically confirmed as G. destructans.
Journal of Wildlife Diseases | 2014
Gregory G. Turner; Carol U. Meteyer; Hazel Barton; John F. Gumbs; DeeAnn M. Reeder; Barrie E. Overton; Hana Bandouchova; Tomáš Bartonička; Natália Martínková; Jiri Pikula; Jan Zukal; David S. Blehert
Abstract Definitive diagnosis of the bat disease white-nose syndrome (WNS) requires histologic analysis to identify the cutaneous erosions caused by the fungal pathogen Pseudogymnoascus [formerly Geomyces] destructans (Pd). Gross visual inspection does not distinguish bats with or without WNS, and no nonlethal, on-site, preliminary screening methods are available for WNS in bats. We demonstrate that long-wave ultraviolet (UV) light (wavelength 366–385 nm) elicits a distinct orange–yellow fluorescence in bat-wing membranes (skin) that corresponds directly with the fungal cupping erosions in histologic sections of skin that are the current gold standard for diagnosis of WNS. Between March 2009 and April 2012, wing membranes from 168 North American bat carcasses submitted to the US Geological Survey National Wildlife Health Center were examined with the use of both UV light and histology. Comparison of these techniques showed that 98.8% of the bats with foci of orange–yellow wing fluorescence (n = 80) were WNS-positive based on histologic diagnosis; bat wings that did not fluoresce under UV light (n = 88) were all histologically negative for WNS lesions. Punch biopsy samples as small as 3 mm taken from areas of wing with UV fluorescence were effective for identifying lesions diagnostic for WNS by histopathology. In a nonlethal biopsy-based study of 62 bats sampled (4-mm diameter) in hibernacula of the Czech Republic during 2012, 95.5% of fluorescent (n = 22) and 100% of nonfluorescent (n = 40) wing samples were confirmed by histopathology to be WNS positive and negative, respectively. This evidence supports use of long-wave UV light as a nonlethal and field-applicable method to screen bats for lesions indicative of WNS. Further, UV fluorescence can be used to guide targeted, nonlethal biopsy sampling for follow-up molecular testing, fungal culture analysis, and histologic confirmation of WNS.
Proceedings of the Royal Society of London B: Biological Sciences (1934-1990) | 2007
Natália Martínková; Robbie A. McDonald; Jeremy B. Searle
The current Irish biota has controversial origins. Ireland was largely covered by ice at the Last Glacial Maximum (LGM) and may not have had land connections to continental Europe and Britain thereafter. Given the potential difficulty for terrestrial species to colonize Ireland except by human introduction, we investigated the stoat (Mustela erminea) as a possible cold-tolerant model species for natural colonization of Ireland at the LGM itself. The stoat currently lives in Ireland and Britain and across much of the Holarctic region including the high Arctic. We studied mitochondrial DNA variation (1771 bp) over the whole geographical range of the stoat (186 individuals and 142 localities), but with particular emphasis on the British Isles and continental Europe. Irish stoats showed considerably greater nucleotide and haplotype diversity than those in Britain. Bayesian dating is consistent with an LGM colonization of Ireland and suggests that Britain was colonized later. This later colonization probably reflects a replacement event, which can explain why Irish and British stoats belong to different mitochondrial lineages as well as different morphologically defined subspecies. The molecular data strongly indicate that stoats colonized Ireland naturally and that their genetic variability reflects accumulation of mutations during a population expansion on the island.
PLOS ONE | 2014
Jan Zukal; Hana Bandouchova; Tomáš Bartonička; Hana Berková; Virgil Brack; Jiri Brichta; Matej Dolinay; Kamil S. Jaron; Veronika Kovacova; Miroslav Kovarik; Natália Martínková; K. Ondracek; Zdenek Rehak; Gregory G. Turner; Jiri Pikula
Host traits and phylogeny can determine infection risk by driving pathogen transmission and its ability to infect new hosts. Predicting such risks is critical when designing disease mitigation strategies, and especially as regards wildlife, where intensive management is often advocated or prevented by economic and/or practical reasons. We investigated Pseudogymnoascus [Geomyces] destructans infection, the cause of white-nose syndrome (WNS), in relation to chiropteran ecology, behaviour and phylogenetics. While this fungus has caused devastating declines in North American bat populations, there have been no apparent population changes attributable to the disease in Europe. We screened 276 bats of 15 species from hibernacula in the Czech Republic over 2012 and 2013, and provided histopathological evidence for 11 European species positive for WNS. With the exception of Myotis myotis, the other ten species are all new reports for WNS in Europe. Of these, M. emarginatus, Eptesicus nilssonii, Rhinolophus hipposideros, Barbastella barbastellus and Plecotus auritus are new to the list of P. destructans-infected bat species. While the infected species are all statistically phylogenetically related, WNS affects bats from two suborders. These are ecologically diverse and adopt a wide range of hibernating strategies. Occurrence of WNS in distantly related bat species with diverse ecology suggests that the pathogen may be a generalist and that all bats hibernating within the distribution range of P. destructans may be at risk of infection.
Scientific Reports | 2016
Jan Zukal; Hana Bandouchova; Jiri Brichta; Adela Cmokova; Kamil S. Jaron; Miroslav Kolarik; Veronika Kovacova; Alena Kubátová; Alena Nováková; Oleg Orlov; Jiri Pikula; Primož Presetnik; Jurģis Šuba; Alexandra Zahradníková; Natália Martínková
A striking feature of white-nose syndrome, a fungal infection of hibernating bats, is the difference in infection outcome between North America and Europe. Here we show high WNS prevalence both in Europe and on the West Siberian Plain in Asia. Palearctic bat communities tolerate similar fungal loads of Pseudogymnoascus destructans infection as their Nearctic counterparts and histopathology indicates equal focal skin tissue invasiveness pathognomonic for WNS lesions. Fungal load positively correlates with disease intensity and it reaches highest values at intermediate latitudes. Prevalence and fungal load dynamics in Palearctic bats remained persistent and high between 2012 and 2014. Dominant haplotypes of five genes are widespread in North America, Europe and Asia, expanding the source region of white-nose syndrome to non-European hibernacula. Our data provides evidence for both endemicity and tolerance to this persistent virulent fungus in the Palearctic, suggesting that host-pathogen interaction equilibrium has been established.
Evolution | 2014
Thomas Cucchi; Ross Barnett; Natália Martínková; Sabrina Renaud; Elodie Renvoisé; Allowen Evin; Alison Sheridan; Ingrid Mainland; Caroline Wickham-Jones; Christelle Tougard; Jean Pierre Quéré; Michel Pascal; Marine Pascal; Gerald Heckel; Paul O'Higgins; Jeremy B. Searle; Keith Dobney
Island evolution may be expected to involve fast initial morphological divergence followed by stasis. We tested this model using the dental phenotype of modern and ancient common voles (Microtus arvalis), introduced onto the Orkney archipelago (Scotland) from continental Europe some 5000 years ago. First, we investigated phenotypic divergence of Orkney and continental European populations and assessed climatic influences. Second, phenotypic differentiation among Orkney populations was tested against geography, time, and neutral genetic patterns. Finally, we examined evolutionary change along a time series for the Orkney Mainland. Molar gigantism and anterior‐lobe hypertrophy evolved rapidly in Orkney voles following introduction, without any transitional forms detected. Founder events and adaptation appear to explain this initial rapid evolution. Idiosyncrasy in dental features among different island populations of Orkney voles is also likely the result of local founder events following Neolithic translocation around the archipelago. However, against our initial expectations, a second marked phenotypic shift occurred between the 4th and 12th centuries AD, associated with increased pastoral farming and introduction of competitors (mice and rats) and terrestrial predators (foxes and cats). These results indicate that human agency can generate a more complex pattern of morphological evolution than might be expected in island rodents.
Archive | 2014
Thomas Cucchi; Ross Barnett; Natália Martínková; Sabrina Renaud; Elodie Renvoisé; Allowen Evin; Alison Sheridan; Ingrid Mainland; Caroline Wickham-Jones; Christelle Tougard; Jean Pierre Quéré; Michel Pascal; Marine Pascal; Gerald Heckel; Paul O'Higgins; Jeremy B. Searle; Keith Dobney
Island evolution may be expected to involve fast initial morphological divergence followed by stasis. We tested this model using the dental phenotype of modern and ancient common voles (Microtus arvalis), introduced onto the Orkney archipelago (Scotland) from continental Europe some 5000 years ago. First, we investigated phenotypic divergence of Orkney and continental European populations and assessed climatic influences. Second, phenotypic differentiation among Orkney populations was tested against geography, time, and neutral genetic patterns. Finally, we examined evolutionary change along a time series for the Orkney Mainland. Molar gigantism and anterior‐lobe hypertrophy evolved rapidly in Orkney voles following introduction, without any transitional forms detected. Founder events and adaptation appear to explain this initial rapid evolution. Idiosyncrasy in dental features among different island populations of Orkney voles is also likely the result of local founder events following Neolithic translocation around the archipelago. However, against our initial expectations, a second marked phenotypic shift occurred between the 4th and 12th centuries AD, associated with increased pastoral farming and introduction of competitors (mice and rats) and terrestrial predators (foxes and cats). These results indicate that human agency can generate a more complex pattern of morphological evolution than might be expected in island rodents.
Folia Zoologica | 2012
Natália Martínková; Jiří C. Moravec
Abstract. We combined mitochondrial (cyb, control region, coi, nd4) and nuclear (irbp, ghr, sry, lcat) DNA sequence data to infer phylogenetic relationships of arvicoline voles. The concatenated supermatrix contained 72.8 % of missing data. From this dataset, Bayesian inference showed close relationships of Arvicola and Chionomys, Proedromys with Lasiopodomys and Microtus gregalis, Phaiomys with Neodon and M. clarkei. Genus Microtus formed a supported group with Blanfordimys and N. juldaschi. The gene partition taxon sets were explained in the multilocus phylogeny in such a way that the resulting Bayesian inference tree represented a unique solution on a terrace in the tree space. This means that although the supermatrix contained a large proportion of missing data, it was informative in retrieving a phylogeny with a unique optimality score, tree likelihood.
Collaboration
Dive into the Natália Martínková's collaboration.
University of Veterinary and Pharmaceutical Sciences Brno
View shared research outputsUniversity of Veterinary and Pharmaceutical Sciences Brno
View shared research outputs