Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Mast is active.

Publication


Featured researches published by Natalia Mast.


Journal of Biological Chemistry | 2011

Structural Basis for Three-step Sequential Catalysis by the Cholesterol Side Chain Cleavage Enzyme CYP11A1

Natalia Mast; Andrew J. Annalora; David T. Lodowski; Krzysztof Palczewski; C. David Stout; Irina A. Pikuleva

Mitochondrial cytochrome P450 11A1 (CYP11A1 or P450 11A1) is the only known enzyme that cleaves the side chain of cholesterol, yielding pregnenolone, the precursor of all steroid hormones. Pregnenolone is formed via three sequential monooxygenation reactions that involve the progressive production of 22R-hydroxycholesterol (22HC) and 20α,22R-dihydroxycholesterol, followed by the cleavage of the C20-C22 bond. Herein, we present the 2.5-Å crystal structure of CYP11A1 in complex with the first reaction intermediate, 22HC. The active site cavity in CYP11A1 represents a long curved tube that extends from the protein surface to the heme group, the site of catalysis. 22HC occupies two-thirds of the cavity with the 22R-hydroxyl group nearest the heme, 2.56 Å from the iron. The space at the entrance to the active site is not taken up by 22HC but filled with ordered water molecules. The network formed by these water molecules allows the “soft” recognition of the 22HC 3β-hydroxyl. Such a mode of 22HC binding suggests shuttling of the sterol intermediates between the active site entrance and the heme group during the three-step reaction. Translational freedom of 22HC and torsional motion of its aliphatic tail are supported by solution studies. The CYP11A1–22HC co-complex also provides insight into the structural basis of the strict substrate specificity and high catalytic efficiency of the enzyme and highlights conserved structural motifs involved in redox partner interactions by mitochondrial P450s.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain

Natalia Mast; Mark A. White; Ingemar Björkhem; Eric F. Johnson; C. David Stout; Irina A. Pikuleva

By converting cholesterol to 24S-hydroxycholesterol, cytochrome P450 46A1 (CYP46A1) initiates the major pathway for cholesterol removal from the brain. Two crystal structures of CYP46A1 were determined. First is the 1.9-Å structure of CYP46A1 complexed with a high-affinity substrate cholesterol 3-sulfate (CH-3S). The second structure is that of the substrate-free CYP46A1 at 2.4-Å resolution. CH-3S is bound in the productive orientation and occupies the entire length of the banana-shaped hydrophobic active-site cavity. A unique helix B′–C loop insertion (residues 116–120) contributes to positioning cholesterol for oxygenation catalyzed by CYP46A1. A comparison with the substrate-free structure reveals substantial substrate-induced conformational changes in CYP46A1 and suggests that structurally distinct compounds could bind in the enzyme active site. In vitro assays were performed to characterize the effect of different therapeutic agents on cholesterol hydroxylase activity of purified full-length recombinant CYP46A1, and several strong inhibitors and modest coactivators of CYP46A1 were identified. Structural and biochemical data provide evidence that CYP46A1 activity could be altered by exposure to some therapeutic drugs and potentially other xenobiotics.


Journal of Biological Chemistry | 2009

The structure of Mycobacterium tuberculosis CYP125: Molecular basis for cholesterol binding in a P450 needed for host infection

Kirsty J. McLean; Pierre Lafite; Colin Levy; Myles R. Cheesman; Natalia Mast; Irina A. Pikuleva; David Leys; Andrew W. Munro

We report characterization and the crystal structure of the Mycobacterium tuberculosis cytochrome P450 CYP125, a P450 implicated in metabolism of host cholesterol and essential for establishing infection in mice. CYP125 is purified in a high spin form and undergoes both type I and II spectral shifts with various azole drugs. The 1.4-Å structure of ligand-free CYP125 reveals a “letterbox” active site cavity of dimensions appropriate for entry of a polycyclic sterol. A mixture of hexa-coordinate and penta-coordinate states could be discerned, with water binding as the 6th heme-ligand linked to conformation of the I-helix Val267 residue. Structures in complex with androstenedione and the antitubercular drug econazole reveal that binding of hydrophobic ligands occurs within the active site cavity. Due to the funnel shape of the active site near the heme, neither approaches the heme iron. A model of the cholesterol CYP125 complex shows that the alkyl side chain extends toward the heme iron, predicting hydroxylation of cholesterol C27. The alkyl chain is in close contact to Val267, suggesting a substrate binding-induced low- to high-spin transition coupled to reorientation of the latter residue. Reconstitution of CYP125 activity with a redox partner system revealed exclusively cholesterol 27-hydroxylation, consistent with structure and modeling. This activity may enable catabolism of host cholesterol or generation of immunomodulatory compounds that enable persistence in the host. This study reveals structural and catalytic properties of a potential M. tuberculosis drug target enzyme, and the likely mode by which the host-derived substrate is bound and hydroxylated.


Journal of Biological Chemistry | 2010

Structural and Biochemical Characterization of Mycobacterium tuberculosis CYP142 EVIDENCE FOR MULTIPLE CHOLESTEROL 27-HYDROXYLASE ACTIVITIES IN A HUMAN PATHOGEN

Max D. Driscoll; Kirsty J. McLean; Colin Levy; Natalia Mast; Irina A. Pikuleva; Pierre Lafite; Stephen E. J. Rigby; David Leys; Andrew W. Munro

The Mycobacterium tuberculosis cytochrome P450 enzyme CYP142 is encoded in a large gene cluster involved in metabolism of host cholesterol. CYP142 was expressed and purified as a soluble, low spin P450 hemoprotein. CYP142 binds tightly to cholesterol and its oxidized derivative cholest-4-en-3-one, with extensive shift of the heme iron to the high spin state. High affinity for azole antibiotics was demonstrated, highlighting their therapeutic potential. CYP142 catalyzes either 27-hydroxylation of cholesterol/cholest-4-en-3-one or generates 5-cholestenoic acid/cholest-4-en-3-one-27-oic acid from these substrates by successive sterol oxidations, with the catalytic outcome dependent on the redox partner system used. The CYP142 crystal structure was solved to 1.6 Å, revealing a similar active site organization to the cholesterol-metabolizing M. tuberculosis CYP125, but having a near-identical organization of distal pocket residues to the branched fatty acid oxidizing M. tuberculosis CYP124. The cholesterol oxidizing activity of CYP142 provides an explanation for previous findings that ΔCYP125 strains of Mycobacterium bovis and M. bovis BCG cannot grow on cholesterol, because these strains have a defective CYP142 gene. CYP142 is revealed as a cholesterol 27-oxidase with likely roles in host response modulation and cholesterol metabolism.


Investigative Ophthalmology & Visual Science | 2011

Cholestenoic Acid Is an Important Elimination Product of Cholesterol in the Retina: Comparison of Retinal Cholesterol Metabolism with That in the Brain

Natalia Mast; Rachel Reem; Ilya R. Bederman; Suber S. Huang; Pier Luigi DiPatre; Ingemar Björkhem; Irina A. Pikuleva

PURPOSE Accumulating evidence indicates a link between cholesterol and age-related macular degeneration. Yet, little is known about cholesterol elimination from the retina and retinal pigment epithelium (RPE), the two layers that are damaged in this blinding disease. Several different pathways of enzymatic cholesterol removal exist in extraocular tissues. The authors tested whether metabolites from these pathways could also be quantified in the bovine and human retina and RPE. For comparison, they measured cholesterol oxidation products in two regions of the bovine and human brain and in the bovine liver and adrenal glands. METHODS Sterol quantification was carried out by isotope dilution gas chromatography-mass spectrometry. Bovine tissues were used first to optimize analytical procedures and to investigate postmortem changes in oxysterol concentrations. Then human specimens were analyzed for oxysterol concentrations. RESULTS Qualitatively, oxysterol profiles were similar in the bovine and human tissues. In the human retina and RPE, the authors could not detect 27-hydroxycholesterol but unexpectedly found that its oxidation product, 5-cholestenoic acid, is the most abundant oxysterol, varying up to threefold in different persons. 24S-Hydroxysterol and pregnenolone were also present in the retina, but at much lower quantities and without significant interindividual variability. In the brain, the predominant oxysterol was 24S-hydroxycholesterol. CONCLUSIONS The oxysterol profile of the retina suggests that all known pathways of cholesterol elimination in extraocular organs are operative in the retina and that they likely vary depending on specific cell type. However, overall oxidation to 5-cholestenoic acid appears to be the predominant mechanism for cholesterol elimination from this organ.


Journal of Biological Chemistry | 2010

Structural basis of drug binding to CYP46A1, an enzyme that controls cholesterol turnover in the brain.

Natalia Mast; Casey D. Charvet; Irina A. Pikuleva; C.D. Stout

Cytochrome P450 46A1 (CYP46A1) initiates the major pathway of cholesterol elimination from the brain and thereby controls cholesterol turnover in this organ. We determined x-ray crystal structures of CYP46A1 in complex with four structurally distinct pharmaceuticals; antidepressant tranylcypromine (2.15 Å), anticonvulsant thioperamide (1.65 Å), antifungal voriconazole (2.35 Å), and antifungal clotrimazole (2.50 Å). All four drugs are nitrogen-containing compounds that have nanomolar affinity for CYP46A1 in vitro yet differ in size, shape, hydrophobicity, and type of the nitrogen ligand. Structures of the co-complexes demonstrate that each drug binds in a single orientation to the active site with tranylcypromine, thioperamide, and voriconazole coordinating the heme iron via their nitrogen atoms and clotrimazole being at a 4 Å distance from the heme iron. We show here that clotrimazole is also a substrate for CYP46A1. High affinity for CYP46A1 is determined by a set of specific interactions, some of which were further investigated by solution studies using structural analogs of the drugs and the T306A CYP46A1 mutant. Collectively, our results reveal how diverse inhibitors can be accommodated in the CYP46A1 active site and provide an explanation for the observed differences in the drug-induced spectral response. Co-complexes with tranylcypromine, thioperamide, and voriconazole represent the first structural characterization of the drug binding to a P450 enzyme.


Journal of Lipid Research | 2010

The antifungal drug voriconazole is an efficient inhibitor of brain cholesterol 24S-hydroxylase in vitro and in vivo

Marjan Shafaati; Natalia Mast; Olof Beck; Rima Nayef; Gun Young Heo; Linda Björkhem-Bergman; Dieter Lütjohann; Ingemar Björkhem; Irina A. Pikuleva

Cholesterol 24S-hydroxylase (CYP46A1) is of key importance for cholesterol homeostasis in the brain. This enzyme seems to be resistant toward most regulatory factors and at present no drug effects on its activity have been described. The crystal structures of the substrate-free and substrate-bound CYP46A1 were recently determined (Mast et al., Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proc. Natl. Acad. Sci. USA. 2008. 105: 9546–9551). These structural studies suggested that ligands other than sterols can bind to CYP46A1. We show here that the antifungal drug voriconazole binds to the enzyme in vitro and inhibits CYP46A1-mediated cholesterol 24-hydroxylation with a Ki of 11 nM. Mice treated with daily intraperitoneal injections of voriconazole for 5 days had high levels of voriconazole in the brain and significantly reduced brain levels of 24S-hydroxycholesterol. The levels of squalene, lathosterol, and HMG-CoA reductase mRNA were reduced in the brain of the voriconazole-treated animals as well, indicating a reduced cholesterol synthesis. Most of this effect may be due to a reduced utilization of cholesterol by CYP46A1. One of the side-effects of voriconazole is visual disturbances. Because CYP46A1 is also expressed in the neural retina, we discuss the possibility that the inhibition of CYP46A1 by voriconazole contributes to these visual disturbances.


Journal of Proteome Research | 2011

Quantification of cholesterol-metabolizing p450s CYP27A1 and CYP46A1 in neural tissues reveals a lack of enzyme-product correlations in human retina but not human brain

Wei Li Liao; Gun Young Heo; Nathan G. Dodder; Rachel E. Reem; Natalia Mast; Suber S. Huang; Pier Luigi DiPatre; Illarion V. Turko; Irina A. Pikuleva

Cytochrome P450 enzymes (CYP or P450) 46A1 and 27A1 play important roles in cholesterol elimination from the brain and retina, respectively, yet they have not been quantified in human organs because of their low abundance and association with membrane. On the basis of our previous development of a multiple reaction monitoring (MRM) workflow for measurements of low-abundance membrane proteins, we quantified CYP46A1 and CYP27A1 in human brain and retina samples from four donors. These enzymes were quantified in the total membrane pellet, a fraction of the whole tissue homogenate, using ¹⁵N-labled recombinant P450s as internal standards. The average P450 concentrations/mg of total tissue protein were 345 fmol of CYP46A1 and 110 fmol of CYP27A1 in the temporal lobe, and 60 fmol of CYP46A1 and 490 fmol of CYP27A1 in the retina. The corresponding P450 metabolites were then measured in the same tissue samples and compared to the P450 enzyme concentrations. Investigation of the enzyme-product relationships and analysis of the P450 measurements based on different signature peptides revealed a possibility of retina-specific post-translational modification of CYP27A1. The data obtained provide important insights into the mechanisms of cholesterol elimination from different neural tissues.


Journal of Biological Chemistry | 2014

Effects of a Disrupted Blood-Brain Barrier on Cholesterol Homeostasis in the Brain

Ahmed Saeed; Guillem Genové; Tian Li; Dieter Lütjohann; Maria Olin; Natalia Mast; Irina A. Pikuleva; Peter J. Crick; Yuqin Wang; William J. Griffiths; Christer Betsholtz; Ingemar Björkhem

Background: The role of the blood-brain barrier for cholesterol homeostasis in the brain is not known. Results: Significant influx of cholesterol into the brain and increased efflux of 24(S)-hydroxycholesterol were observed in mice with a defect blood-brain barrier. Conclusion: A defect blood-brain barrier increases permeability for steroid flux in both directions. Significance: Elucidation of the role of the blood-brain barrier for brain cholesterol turnover. The presence of the blood-brain barrier (BBB) is critical for cholesterol metabolism in the brain, preventing uptake of lipoprotein-bound cholesterol from the circulation. The metabolic consequences of a leaking BBB for cholesterol metabolism have not been studied previously. Here we used a pericyte-deficient mouse model, Pdgfbret/ret, shown to have increased permeability of the BBB to a range of low-molecular mass and high-molecular mass tracers. There was a significant accumulation of plant sterols in the brains of the Pdgfbret/ret mice. By dietary treatment with 0.3% deuterium-labeled cholesterol, we could demonstrate a significant flux of cholesterol from the circulation into the brains of the mutant mice roughly corresponding to about half of the measured turnover of cholesterol in the brain. We expected the cholesterol flux into the brain to cause a down-regulation of cholesterol synthesis. Instead, cholesterol synthesis was increased by about 60%. The levels of 24(S)-hydroxycholesterol (24S-OHC) were significantly reduced in the brains of the pericyte-deficient mice but increased in the circulation. After treatment with 1% cholesterol in diet, the difference in cholesterol synthesis between mutants and controls disappeared. The findings are consistent with increased leakage of 24S-OHC from the brain into the circulation in the pericyte-deficient mice. This oxysterol is an efficient suppressor of cholesterol synthesis, and the results are consistent with a regulatory role of 24S-OHC in the brain. To our knowledge, this is the first demonstration that a defective BBB may lead to increased flux of a lipophilic compound out from the brain. The relevance of the findings for the human situation is discussed.


Journal of Clinical Investigation | 2012

Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis

Saida Omarova; Casey D. Charvet; Rachel E. Reem; Natalia Mast; Wenchao Zheng; Suber S. Huang; Neal S. Peachey; Irina A. Pikuleva

Several lines of evidence suggest a link between age-related macular degeneration and retinal cholesterol maintenance. Cytochrome P450 27A1 (CYP27A1) is a ubiquitously expressed mitochondrial sterol 27-hydroxylase that plays an important role in the metabolism of cholesterol and cholesterol-related compounds. We conducted a comprehensive ophthalmic evaluation of mice lacking CYP27A1. We found that the loss of CYP27A1 led to dysregulation of retinal cholesterol homeostasis, including unexpected upregulation of retinal cholesterol biosynthesis. Cyp27a1-/- mice developed retinal lesions characterized by cholesterol deposition beneath the retinal pigment epithelium. Further, Cyp27a1-null mice showed pathological neovascularization, which likely arose from both the retina and the choroid, that led to the formation of retinal-choroidal anastomosis. Blood flow alterations and blood vessel leakage were noted in the areas of pathology. The Cyp27a1-/- retina was hypoxic and had activated Müller cells. We suggest a mechanism whereby abolished sterol 27-hydroxylase activity leads to vascular changes and identify Cyp27a1-/- mice as a model for one of the variants of type 3 retinal neovascularization occurring in some patients with age-related macular degeneration.

Collaboration


Dive into the Natalia Mast's collaboration.

Top Co-Authors

Avatar

Irina A. Pikuleva

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ingemar Björkhem

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Illarion V. Turko

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyle W. Anderson

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph B. Lin

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Gun Young Heo

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ilya R. Bederman

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Wei Li Liao

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge