Natalia Pozdnyakova
National Academy of Sciences of Ukraine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalia Pozdnyakova.
The International Journal of Biochemistry & Cell Biology | 2015
Tatiana Borisova; Anastasia Nazarova; Mariia O. Dekaliuk; Natalia Krisanova; Natalia Pozdnyakova; Arsenii Borysov; Roman Sivko; Alexander P. Demchenko
Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences.
Croatian Medical Journal | 2014
Natalia Pozdnyakova; Marina Dudarenko; Ludmila Yatsenko; N. Himmelreich; Olga Krupko; Tatiana Borisova
Aim To analyze the effects of highly selective blocker GAT1, NO-711, and substrate inhibitor GAT3, β-alanine, on the initial velocity of [3H]GABA uptake by cortical, hippocampal, and thalamic nerve terminals (synaptosomes) after perinatal hypoxia. Methods Animals were divided into two groups: control (n = 17) and hypoxia (n = 12). Rats in the hypoxia group underwent hypoxia and seizures (airtight chamber, 4% O2 and 96% N2) at the age of 10-12 postnatal days and were used in the experiments 8-9 weeks after hypoxia. Results In cortical synaptosomes, the effects of NO-711 (30 μΜ) and β-alanine (100 μΜ) on [3H]GABA uptake were similar in control and hypoxia groups. In hippocampal synaptosomes, NO-711 inhibited 84.3% of the initial velocity of [3H]GABA uptake in normal conditions and 80.1% after hypoxia, whereas the effect of β-alanine was increased after hypoxia from 14.4% to 22.1%. In thalamic synaptosomes, the effect of NO-711 was decreased by 79.6% in controls and by 70.9% in hypoxia group, whereas the effect of β-alanine was increased after hypoxia from 20.2% to 30.2%. Conclusions The effectiveness of β-alanine to influence GABA uptake was increased in hippocampal and thalamic nerve terminals as a result of perinatal hypoxia and the effectiveness of NO-711 in thalamic nerve terminals was decreased. These results may indicate changes in the ratio of active GAT1/GAT3 expressed in the plasma membrane of nerve terminals after perinatal hypoxia. We showed a possibility to modulate non-GAT1 GABA transporter activity in different brain regions by exogenous and endogenous β-alanine.
Neurochemistry International | 2011
Natalia Pozdnyakova; L. N. Yatsenko; N. T. Parkhomenko; N. Himmelreich
Hypoxia and seizures early in life can cause multiple neurological deficits and even chronic epilepsy. Here, we report the data obtained in rats exposed to hypoxia and seizures at age 10-12 postnatal days and taken in experiments 8-9 weeks after hypoxia treatment. A level of the extracellular GABA and the initial velocity of GABA uptake were measured in the brain cortex, hippocampus and thalamus using isolated nerve terminals (synaptosomes). It has been revealed that the extracellular [(3)H]GABA level maintained by cortical and hippocampal synaptosomes in standard conditions (with glucose as an energy substrate) was significantly higher in adult rats exposed to hypoxia/seizures at P10-12 than in the control ones, and, moreover, became unstable with tendency to increase. Pyruvate as a single energy substrate was shown to be a highly effective for lowering and stabilizing the extracellular [(3)H]GABA level. This effect of pyruvate was tightly correlated with increase in GABA uptake and GATs affinity to GABA. Thalamus was insensible to the action of perinatal hypoxia/seizures, and thalamic GATs, in contrast to cortical and hippocampal ones, had a lower affinity to GABA (the apparent Km is 39.2±3.1 μM GABA vs 8.9±1.8 μM GABA in the hippocampus). A selective vulnerability of brain regions to hypoxia is suggested to be attributed to distinct terms of their maturation at the postnatal period. Thus, perinatal hypoxia/seizures evoke a long-lasting increase in the extracellular GABA level that could be attenuated by pyruvate treatment. This effect of pyruvate is likely due to a significant increase in GATs-mediated GABA uptake and modulation of GATs kinetic properties.
Journal of Nanobiotechnology | 2016
Natalia Pozdnyakova; Artem Pastukhov; Marina Dudarenko; Maxim Galkin; Arsenii Borysov; Tatiana Borisova
BackgroundNanodiamonds are one of the most perspective nano-sized particles with superb physical and chemical properties, which are mainly composed of carbon sp3 structures in the core with sp2 and disorder/defect carbons on the surface. The research team recently demonstrated neuromodulatory properties of carbon nanodots with other than nanodiamonds hybridization types, i.e., sp2 hybridized graphene islands and diamond-like sp3 hybridized elements.ResultsIn this study, neuroactive properties of uncoated nanodiamonds produced by detonation synthesis were assessed basing on their effects on transporter-mediated uptake and the ambient level of excitatory and inhibitory neurotransmitters, glutamate and γ-aminobutyric acid (GABA), in isolated rat brain nerve terminals. It was shown that nanodiamonds in a dose-dependent manner attenuated the initial velocity of Na+-dependent transporter-mediated uptake and accumulation of l-[14C]glutamate and [3H]GABA by nerve terminals and increased the ambient level of these neurotransmitters. Also, nanodiamonds caused a weak reduction in acidification of synaptic vesicles and depolarization of the plasma membrane of nerve terminals.ConclusionsTherefore, despite different types of hybridization in nanodiamonds and carbon dots, they exhibit very similar effects on glutamate and GABA transport in nerve terminals and this common feature of both nanoparticles is presumably associated with their nanoscale size. Observed neuroactive properties of pure nanodiamonds can be used in neurotheranostics for simultaneous labeling/visualization of nerve terminals and modulation of key processes of glutamate- and GABAergic neurotransmission. In comparison with carbon dots, wider medical application involving hypo/hyperthermia, external magnetic fields, and radiolabel techniques can be perspective for nanodiamonds.
Neuroscience Letters | 2012
L. N. Yatsenko; Natalia Pozdnyakova; Marina Dudarenko; N. Himmelreich
Hypoxia-evoked seizures (H/S) early in life lead to multiple chronic neurological deficits. Here, we present the results of studying GABA release and uptake in hippocampal axon terminals of rats exposed to H/S at 10-12 days of age. We characterized (i) exocytotic release of GABA; (ii) the initial rate of GABA uptake; (iii) the regulation of GABA release by presynaptic GABA(B) receptors. Rats were used for experiments 2, 4 and 8 weeks after H/S. We found that exocytotic [(3)H]GABA release was higher in rats exposed to H/S, and a maximal difference in the release was observed between the control and experimental rats tested 2 weeks after H/S. In contrast, the initial rate of GABA uptake decreased with age, and this tendency was more pronounced in rats exposed to H/S. Using (±)-baclofen and SKF 97541 as agonists of GABA(B) receptor, we revealed that a significant difference in the auto-inhibition of exocytotic [(3)H]GABA release was detected only between the control and experimental adult rats (8 weeks after hypoxia). The inhibitory effect dropped dramatically in the control adults, but only slightly decreased in adult rats exposed to H/S, thus becoming threefold more potent after hypoxic injury. Together, the results show that H/S affects the dynamics of age-dependent changes in the GABAergic system, and that the enhanced GABA(B) receptor-mediated auto-inhibition can be an important factor in weakening the postsynaptic inhibition and in the development of hyperexcitability in rats exposed to H/S.
Food and Chemical Toxicology | 2018
Natalia Krisanova; Natalia Pozdnyakova; Artem Pastukhov; Marina Dudarenko; Oksana Maksymchuk; Petro Parkhomets; Roman Sivko; Tatiana Borisova
Recent experimental and epidemiologic investigations have revealed that the central nervous system is a target for vitamin D3 action and also linked vitamin D3 deficiency to Alzheimers and Parkinsons disease, autism and dementia. Abnormal homeostasis of glutamate and GABA and signaling disbalance are implicated in the pathogenesis of major neurological diseases. Here, key transport characteristics of glutamate and GABA were analysed in presynaptic nerve terminals (synaptosomes) isolated from the cortex of vitamin D3 deficient (VDD) rats. Puberty rats were kept at the VDD diet up to adulthood. VDD caused: (i) a decrease in the initial rates of L-[14C]glutamate and [3H]GABA uptake by plasma membrane transporters of nerve terminals; (ii) a decrease in exocytotic release of L-[14C]glutamate and [3H]GABA; (iii) changes in expression of glutamate (EAAC-1) and GABA (GAT-3) transporters. Whereas, the synaptosomal ambient levels and Ca2+-independent transporter-mediated release of L-[14C]glutamate and [3H]GABA were not significantly altered in VDD. Vitamin D3 is a potent neurosteroid and its nutritional deficiency can provoke development of neurological consequences changing glutamate/GABA transporter expressions and excitation/inhibition balance. Also, changes in glutamate transport can underlie lower resistance to hypoxia/ischemia, larger infarct volumes and worsened outcomes in ischemic stroke patients with VDD.
International Journal of Developmental Neuroscience | 2017
Natalia Pozdnyakova
Perinatal hypoxia leads to behavioral abnormalities, cognitive disabilities, and epilepsy resulting from alterations in neurodevelopment, maturation and construction of the network. Considering a particular role of γ‐aminobutyric acid (GABA) for an immature brain, we analysed transporter‐mediated [3H]GABA uptake in the cortical, hippocampal and thalamic nerve terminals isolated from rats of different age in the control and after perinatal hypoxia. The state of hypoxia was induced by exposure of rats at the age of 10 postnatal days (pd) (that corresponds approximately to the time of birth in humans) to a respiratory medium with low O2 content (4% O2 and 96%N2) for 12 min (up to the initiation of clonico‐tonic seizures). Here, we found that the initial rate of [3Н]GABA uptake was higher in the young rats (pd 17–19) as compared to the older ones (pd 24–26, 38–40 and 66–73) in both control and hypoxia groups. It decreased abruptly by 50% in the thalamus and by 25% in the cortex for the period from pd 17–19 to pd 66–73. In the hippocampus, a decrease in the rate during the same time interval was 25%. Exposure to hypoxia had no effect on the intensity of [3Н]GABA uptake by the cortical and thalamic nerve terminals, but caused a significant age‐dependent attenuation (by 35%) of the uptake intensity in the hippocampal ones. Significant age‐dependent hypoxia‐independent decrease in [3Н]GABA uptake with step‐like dynamics of changes was shown in the thalamus and cortex. Gradual age‐dependent hypoxia‐dependent decrease in [3Н]GABA uptake was revealed in the hippocampus, and so a particular vulnerability of the latest structure to hypoxia as compared to the cortex and thalamus was revealed.
Journal of Nanoparticle Research | 2017
Bartlomiej Sojka; Daria Kociołek; Mateusz Banski; Tatiana Borisova; Natalia Pozdnyakova; Artem Pastukhov; Arsenii Borysov; Marina Dudarenko; A. Podhorodecki
Environmental Science and Pollution Research | 2017
Tatiana Borisova; Mariia O. Dekaliuk; Natalia Pozdnyakova; Artem Pastukhov; Marina Dudarenko; Arsenii Borysov; Sandor G. Vari; Alexander P. Demchenko
Microgravity Science and Technology | 2017
Natalia Pozdnyakova; Artem Pastukhov; Marina Dudarenko; Arsenii Borysov; Natalia Krisanova; Anastasia Nazarova; Tatiana Borisova