Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Rakova is active.

Publication


Featured researches published by Natalia Rakova.


Journal of Clinical Investigation | 2013

Immune cells control skin lymphatic electrolyte homeostasis and blood pressure

Helge Wiig; Agnes Schröder; Wolfgang Neuhofer; Jonathan Jantsch; Christoph W. Kopp; Tine V. Karlsen; Michael Boschmann; Jennifer Goss; Maija Bry; Natalia Rakova; Anke Dahlmann; Sven Brenner; Olav Tenstad; Harri Nurmi; Eero Mervaala; Hubertus Wagner; Franz-Xaver Beck; Dominik Müller; Dontscho Kerjaschki; Friedrich C. Luft; David G. Harrison; Kari Alitalo; Jens Titze

The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function.


Cell Metabolism | 2015

Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense

Jonathan Jantsch; Valentin Schatz; Diana Friedrich; Agnes Schröder; Christoph W. Kopp; Isabel Siegert; Andreas Maronna; David Wendelborn; Peter Linz; Katrina J. Binger; Matthias Gebhardt; Matthias Heinig; Patrick Neubert; Fabian Fischer; Stefan Teufel; Jean-Pierre David; Clemens Neufert; Alexander Cavallaro; Natalia Rakova; Christoph Küper; Franz-Xaver Beck; Wolfgang Neuhofer; Dominik N. Müller; Gerold Schuler; Michael Uder; Christian Bogdan; Friedrich C. Luft; Jens Titze

Immune cells regulate a hypertonic microenvironment in the skin; however, the biological advantage of increased skin Na(+) concentrations is unknown. We found that Na(+) accumulated at the site of bacterial skin infections in humans and in mice. We used the protozoan parasite Leishmania major as a model of skin-prone macrophage infection to test the hypothesis that skin-Na(+) storage facilitates antimicrobial host defense. Activation of macrophages in the presence of high NaCl concentrations modified epigenetic markers and enhanced p38 mitogen-activated protein kinase (p38/MAPK)-dependent nuclear factor of activated T cells 5 (NFAT5) activation. This high-salt response resulted in elevated type-2 nitric oxide synthase (Nos2)-dependent NO production and improved Leishmania major control. Finally, we found that increasing Na(+) content in the skin by a high-salt diet boosted activation of macrophages in a Nfat5-dependent manner and promoted cutaneous antimicrobial defense. We suggest that the hypertonic microenvironment could serve as a barrier to infection.


Hypertension | 2015

Agreement Between 24-Hour Salt Ingestion and Sodium Excretion in a Controlled Environment

Kathrin Lerchl; Natalia Rakova; Anke Dahlmann; Manfred Rauh; Ulrike Goller; Mathias Basner; David F. Dinges; Luis Beck; Alexander Agureev; Irina M. Larina; Victor Baranov; B. V. Morukov; Kai-Uwe Eckardt; Galina Vassilieva; Peter Wabel; Jörg Vienken; Karl Kirsch; Bernd Johannes; Alexander Krannich; Friedrich C. Luft; Jens Titze

Accurately collected 24-hour urine collections are presumed to be valid for estimating salt intake in individuals. We performed 2 independent ultralong-term salt balance studies lasting 105 (4 men) and 205 (6 men) days in 10 men simulating a flight to Mars. We controlled dietary intake of all constituents for months at salt intakes of 12, 9, and 6 g/d and collected all urine. The subjects’ daily menus consisted of 27 279 individual servings, of which 83.0% were completely consumed, 16.5% completely rejected, and 0.5% incompletely consumed. Urinary recovery of dietary salt was 92% of recorded intake, indicating long-term steady-state sodium balance in both studies. Even at fixed salt intake, 24-hour urine collection for sodium excretion (UNaV) showed infradian rhythmicity. We defined a ±25 mmol deviation from the average difference between recorded sodium intake and UNaV as the prediction interval to accurately classify a 3-g difference in salt intake. Because of the biological variability in UNaV, only every other daily urine sample correctly classified a 3-g difference in salt intake (49%). By increasing the observations to 3 consecutive 24-hour collections and sodium intakes, classification accuracy improved to 75%. Collecting seven 24-hour urines and sodium intake samples improved classification accuracy to 92%. We conclude that single 24-hour urine collections at intakes ranging from 6 to 12 g salt per day were not suitable to detect a 3-g difference in individual salt intake. Repeated measurements of 24-hour UNaV improve precision. This knowledge could be relevant to patient care and the conduct of intervention trials.


Kidney International | 2014

Spooky sodium balance

Jens Titze; Anke Dahlmann; Kathrin Lerchl; Christoph W. Kopp; Natalia Rakova; Agnes Schröder; Friedrich C. Luft

Current teaching states that when sodium intake is increased from low to high levels, total-body sodium (TBNa) and water increase until daily sodium excretion again equals intake. When sodium intake is reduced, sodium excretion briefly exceeds intake until the excess TBNa and water are eliminated, at which point sodium excretion again equals intake. However, careful balance studies oftentimes conflict with this view and long-term studies suggest that TBNa fluctuates independent of intake or body weight. We recently performed the opposite experiment in that we fixed sodium intake for several weeks at three levels of sodium intake and collected all urine made. We found weekly (circaseptan) patterns in sodium excretion that were inversely related to aldosterone and directly to cortisol. TBNa was not dependent on sodium intake but instead exhibited far longer (≥ monthly) infradian rhythms independent of extracellular water, body weight, or blood pressure. The findings are consistent with our ideas on tissue sodium storage and its regulation that we developed on the basis of animal research. We are implementing (23)Na-magnetic resonance imaging (MRI) to pursue open questions on sodium balance in patients. Our findings could be relevant to therapeutic strategies for hypertension and target-organ damage.


Nature | 2017

Salt-responsive gut commensal modulates TH17 axis and disease

Nicola Wilck; Mariana Matus; Sean M. Kearney; Scott W. Olesen; Kristoffer Forslund; Hendrik Bartolomaeus; Stefanie Haase; Anja Mähler; András Balogh; Lajos Markó; Olga Vvedenskaya; Friedrich H. Kleiner; Dmitry Tsvetkov; Lars Klug; Paul Igor Costea; Shinichi Sunagawa; Lisa M. Maier; Natalia Rakova; Valentin Schatz; Patrick Neubert; Christian Frätzer; Alexander Krannich; Maik Gollasch; Diana A. Grohme; Beatriz F. Côrte-Real; Roman G. Gerlach; Marijana Basic; Athanasios Typas; Chuan Wu; Jens Titze

A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut–immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.


NMR in Biomedicine | 2014

Skin sodium measured with 23Na MRI at 7.0 T

Peter Linz; Davide Santoro; Wolfgang Renz; Jan Rieger; Anjuli Ruehle; Jan Ruff; Michael Deimling; Natalia Rakova; Dominik Müller; Friedrich C. Luft; Jens Titze; Thoralf Niendorf

Skin sodium (Na+) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na+ storage in humans (23Na MRI) at 3.0 T. This work examines the feasibility of high in‐plane spatial resolution 23Na MRI in skin at 7.0 T. A two‐channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two‐dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20–79 years) were investigated. Transverse slices of the calf were imaged with 23Na MRI using a high in‐plane resolution of 0.9 × 0.9 mm2. Skin Na+ content was determined using external agarose standards covering a physiological range of Na+ concentrations. To assess the intra‐subject reproducibility, each volunteer was examined three to five times with each session including a 5‐min walk and repositioning/preparation of the subject. The age dependence of skin Na+ content was investigated. The 23Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in‐plane spatial resolution imaging of human skin. Intra‐subject variability of human skin Na+ content in the volunteer population was <10.3%. An age‐dependent increase in skin Na+ content was observed (r = 0.78). The assignment of Na+ stores with 23Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na+ balance and Na+ storage function of skin. Copyright


FEBS Letters | 2008

Does NO play a role in cytokinin signal transduction

G. A. Romanov; Sergey N. Lomin; Natalia Rakova; Alexander Heyl; Thomas Schmülling

We tested the hypothesis that nitric oxide (NO) plays an important role in cytokinin signaling. Inhibitors of NO‐synthase (NOS), L‐NMMA and L‐NAME, inhibited the expression of the GUS gene controlled by the cytokinin‐responsive ARR5 promoter. However, the inactive analogues D‐NMMA and D‐NAME had a similar inhibitory activity. NO donors alone did not induce GUS activity and the NO scavenger cPTIO did not prevent the induction of the ARR5 promoter by cytokinin. Northern blot analysis of the PARR5::GUS transgene and the host ARR5 gene revealed that cytokinin‐induced transcript accumulation was not altered by NMMA‐treatment, indicating that NMMA acts post‐transcriptionally. Together the data show that NO has no direct role in eliciting the primary cytokinin response in plants.


Journal of Clinical Investigation | 2017

High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation

Kento Kitada; Steffen Daub; Yahua Zhang; Janet D. Klein; Daisuke Nakano; Tetyana V. Pedchenko; Louise Lantier; Lauren M. LaRocque; Adriana Marton; Patrick Neubert; Agnes Schröder; Natalia Rakova; Jonathan Jantsch; Anna Dikalova; Sergey Dikalov; David G. Harrison; Dominik Müller; Akira Nishiyama; Manfred Rauh; Raymond C. Harris; Friedrich C. Luft; David H. Wasserman; Jeff M. Sands; Jens Titze

Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter–driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions.


Journal of Clinical Investigation | 2017

Increased salt consumption induces body water conservation and decreases fluid intake

Natalia Rakova; Kento Kitada; Kathrin Lerchl; Anke Dahlmann; Anna Birukov; Steffen Daub; Christoph W. Kopp; Tetyana V. Pedchenko; Yahua Zhang; Luis Beck; Bernd Johannes; Adriana Marton; Dominik Müller; Manfred Rauh; Friedrich C. Luft; Jens Titze

BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO, Coppenrath und Wiese, ENERVIT, HIPP, Katadyn, Kellogg, Molda, and Unilever.


The American Journal of Clinical Nutrition | 2016

Ultra-long–term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion

Anna Birukov; Natalia Rakova; Kathrin Lerchl; Rik H.G. Olde Engberink; Bernd Johannes; Peter Wabel; Ulrich Moissl; Manfred Rauh; Friedrich C. Luft; Jens Titze

BACKGROUND The intake of sodium, chloride, and potassium is considered important to healthy nutrition and cardiovascular disease risk. Estimating the intake of these electrolytes is difficult and usually predicated on urine collections, commonly for 24 h, which are considered the gold standard. We reported on data earlier for sodium but not for potassium or chloride. OBJECTIVE We were able to test the value of 24-h urine collections in a unique, ultra-long-term balance study conducted during a simulated trip to Mars. DESIGN Four healthy men were observed while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, while their potassium intake was maintained at 4 g/d for 105 d. Six healthy men were studied while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, with a re-exposure of 12 g/d, while their potassium intake was maintained at 4 g/d for 205 d. Food intake and other constituents were recorded every day for each subject. All urine output was collected daily. RESULTS Long-term urine recovery rates for all 3 electrolytes were very high. Rather than the expected constant daily excretion related to daily intake, we observed remarkable daily variation in excretion, with a 7-d infradian rhythm at a relatively constant intake. We monitored 24-h aldosterone excretion in these studies and found that aldosterone appeared to be the regulator for all 3 electrolytes. We report Bland-Altman analyses on the value of urine collections to estimate intake. CONCLUSIONS A single 24-h urine collection cannot predict sodium, potassium, or chloride intake; thus, multiple collections are necessary. This information is important when assessing electrolyte intake in individuals.

Collaboration


Dive into the Natalia Rakova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Friedrich C. Luft

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Agnes Schröder

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lajos Markó

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Manfred Rauh

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Anke Dahlmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christoph W. Kopp

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

David Severs

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge