Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Requena is active.

Publication


Featured researches published by Natalia Requena.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

Emilie Tisserant; Mathilde Malbreil; Alan Kuo; Annegret Kohler; Aikaterini Symeonidi; Raffaella Balestrini; Philippe Charron; Nina Duensing; Nicolas Frei dit Frey; Vivienne Gianinazzi-Pearson; Luz B. Gilbert; Yoshihiro Handa; Joshua R. Herr; Mohamed Hijri; Raman Koul; Masayoshi Kawaguchi; Franziska Krajinski; Peter J. Lammers; Frédéric Masclaux; Claude Murat; Emmanuelle Morin; Steve Ndikumana; Marco Pagni; Denis Petitpierre; Natalia Requena; Pawel Rosikiewicz; Rohan Riley; Katsuharu Saito; Hélène San Clemente; Harris Shapiro

Significance The arbuscular mycorrhizal symbiosis between fungi of the Glomeromycota phylum and plants involves more than two-thirds of all known plant species, including important crop species. This mutualistic symbiosis, involving one of the oldest fungal lineages, is arguably the most ecologically and agriculturally important symbiosis in terrestrial ecosystems. The Glomeromycota are unique in that their spores and coenocytic hyphae contain hundreds of nuclei in a common cytoplasm, which raises important questions about the natural selection, population genetics, and gene expression of these highly unusual organisms. Study of the genome of Rhizophagus irregularis provides insight into genes involved in obligate biotrophy and mycorrhizal symbioses and the evolution of an ancient asexual organism, and thus is of fundamental importance to the field of genome evolution. The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Current Biology | 2011

A Secreted Fungal Effector of Glomus intraradices Promotes Symbiotic Biotrophy

Silke Kloppholz; Hannah Kuhn; Natalia Requena

Biotrophic fungi interacting with plants establish long-term relationships with their hosts to fulfill their life cycles. In contrast to necrotrophs, they need to contend with the defense mechanisms of the plant to develop within the host and feed on living cells. It is generally accepted that microbial pathogens produce and deliver a myriad of effector proteins to hijack the cellular program of their hosts. Arbuscular mycorrhizal (AM) fungi are the most widespread biotrophs of plant roots. We investigated whether AM fungi use effector proteins to short-circuit the plant defense program. Here we show that Glomus intraradices secretes a protein, SP7, that interacts with the pathogenesis-related transcription factor ERF19 in the plant nucleus. ERF19 is highly induced in roots by the fungal pathogen Colletotrichum trifolii as well as by several fungal extracts, but only transiently during mycorrhiza colonization. When constitutively expressed in roots, SP7 leads to higher mycorrhization while reducing the levels of C. trifolii-mediated defense responses. Furthermore, expression of SP7 in the rice blast fungus Magnaporthe oryzae attenuates root decay symptoms. Taken together, these results suggest that SP7 is an effector that contributes to develop the biotrophic status of AM fungi in roots by counteracting the plant immune program.


New Phytologist | 2012

The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont

Emilie Tisserant; Annegret Kohler; P. Dozolme-Seddas; Raffaella Balestrini; Karim Benabdellah; Alexandre Colard; Daniel Croll; C. da Silva; S. K. Gomez; Raman Koul; Nuria Ferrol; Valentina Fiorilli; Damien Formey; Philipp Franken; Nicole Helber; Mohamed Hijri; Luisa Lanfranco; Erika Lindquist; Y. Liu; Mathilde Malbreil; Emmanuelle Morin; Julie Poulain; Harris Shapiro; D. van Tuinen; A. Waschke; Concepción Azcón-Aguilar; Guillaume Bécard; Paola Bonfante; Maria J. Harrison; Helge Küster

• The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. • We generated a set of 25,906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and 454 sequencing. NRVTs were used to construct an oligoarray for investigating gene expression. • We identified transcripts coding for the meiotic recombination machinery, as well as meiosis-specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. • Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.


The Plant Cell | 2011

A Versatile Monosaccharide Transporter That Operates in the Arbuscular Mycorrhizal Fungus Glomus sp Is Crucial for the Symbiotic Relationship with Plants

Nicole Helber; Kathrin Wippel; Norbert Sauer; Sara Schaarschmidt; Bettina Hause; Natalia Requena

Carbon allocation to arbuscular mycorrhizal fungi is the reward that plants offer their symbiotic partners in exchange for mineral nutrients. This study identifies a monosaccharide transporter that plays a key role in this process. For more than 400 million years, plants have maintained a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi. This evolutionary success can be traced to the role of these fungi in providing plants with mineral nutrients, particularly phosphate. In return, photosynthates are given to the fungus, which support its obligate biotrophic lifestyle. Although the mechanisms involved in phosphate transfer have been extensively studied, less is known about the reciprocal transfer of carbon. Here, we present the high-affinity Monosaccharide Transporter2 (MST2) from Glomus sp with a broad substrate spectrum that functions at several symbiotic root locations. Plant cell wall sugars can efficiently outcompete the Glc uptake capacity of MST2, suggesting they can serve as alternative carbon sources. MST2 expression closely correlates with that of the mycorrhiza-specific Phosphate Transporter4 (PT4). Furthermore, reduction of MST2 expression using host-induced gene silencing resulted in impaired mycorrhiza formation, malformed arbuscules, and reduced PT4 expression. These findings highlight the symbiotic role of MST2 and support the hypothesis that the exchange of carbon for phosphate is tightly linked. Unexpectedly, we found that the external mycelium of AM fungi is able to take up sugars in a proton-dependent manner. These results imply that the sugar uptake system operating in this symbiosis is more complex than previously anticipated.


Plant Physiology | 2007

Enzymatic Evidence for the Key Role of Arginine in Nitrogen Translocation by Arbuscular Mycorrhizal Fungi

Cristina Cruz; Helge Egsgaard; Carmen Trujillo; Per Ambus; Natalia Requena; Maria Amélia Martins-Loução; Iver Jakobsen

Key enzymes of the urea cycle and 15N-labeling patterns of arginine (Arg) were measured to elucidate the involvement of Arg in nitrogen translocation by arbuscular mycorrhizal (AM) fungi. Mycorrhiza was established between transformed carrot (Daucus carota) roots and Glomus intraradices in two-compartment petri dishes and three ammonium levels were supplied to the compartment containing the extraradical mycelium (ERM), but no roots. Time courses of specific enzyme activity were obtained for glutamine synthetase, argininosuccinate synthetase, arginase, and urease in the ERM and AM roots. 15NH4+ was used to follow the dynamics of nitrogen incorporation into and turnover of Arg. Both the absence of external nitrogen and the presence of l-norvaline, an inhibitor of Arg synthesis, prevented the synthesis of Arg in the ERM and resulted in decreased activity of arginase and urease in the AM root. The catabolic activity of the urea cycle in the roots therefore depends on Arg translocation from the ERM. 15N labeling of Arg in the ERM was very fast and analysis of its time course and isotopomer pattern allowed estimation of the translocation rate of Arg along the mycelium as 0.13 μg Arg mg−1 fresh weight h−1. The results highlight the synchronization of the spatially separated reactions involved in the anabolic and catabolic arms of the urea cycle. This synchronization is a prerequisite for Arg to be a key component in nitrogen translocation in the AM mycelium.


Current Opinion in Plant Biology | 2011

Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis.

Paola Bonfante; Natalia Requena

The arbuscular mycorrhizal symbiosis that involves most plants and Glomeromycota fungi is the result of a complex exchange of molecular information, which commences before the partners are in physical contact. On the one hand, plants release soluble factors, including strigolactones that activate both the metabolism and branching of the fungal partners. On the other hand, fungi use compounds that trigger the signaling transduction pathways that are required for the symbiotic modus of plant cells. Here we describe some of the recent discoveries regarding the fungal molecules involved in rhizospheric conversation, and the way in which they are perceived by their hosts. We conclude that similar signaling molecules may have different meanings, depending on the context. However, at the end, specificity must be maintained to ensure appropriate partners enter symbiosis.


New Phytologist | 2010

Membrane steroid‐binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula

Hannah Kuhn; Helge Küster; Natalia Requena

Arbuscular mycorrhiza (AM) is a mutualistic biotrophic association that requires a complex exchange of signals between plant and fungus to allow accommodation of the mycosymbiont in the root cortex. Signal exchange happens even before physical contact, activating the plant symbiotic program. We investigated very early transcriptional responses in Medicago truncatula to inoculation with Glomus intraradices and identified four genes induced by diffusible AM fungal signals before contact. Three of them were previously shown to be mycorrhiza induced at later stages of the symbiosis, while MtMSBP1, encoding a membrane-bound steroid-binding protein, is a novel mycorrhizal marker. Expression analyses in plants defective in the symbiotic receptor kinase DMI2 allowed discrimination of two different signaling cascades involved in the perception of the diffusible signals. Thus, while some of the genes are activated in a DMI2-dependent manner, the induction of one of them encoding a proteinase inhibitor is DMI2-independent. Downregulation of MtMSBP1 by RNAi led to an aberrant mycorrhizal phenotype with thick and septated appressoria, decrease number of arbuscules and distorted arbuscule morphology. This provides genetic evidence that MtMSBP1 is critical for mycorrhiza development. We hypothesize that MtMSBP1 plays a role in sterol homeostasis in the root.


Plant Physiology | 2003

Symbiotic Status, Phosphate, and Sucrose Regulate the Expression of Two Plasma Membrane H+-ATPase Genes from the Mycorrhizal Fungus Glomus mosseae

Natalia Requena; Magdalene Breuninger; Philipp Franken; Aurora Ocón

The establishment of the arbuscular mycorrhizal symbiosis results in a modification of the gene expression pattern in both plant and fungus to accomplish the morphological and physiological changes necessary for the bidirectional transfer of nutrients between symbionts. H+-ATPase enzymes play a key role establishing the electrochemical gradient required for the transfer of nutrients across the plasma membrane in both fungi and plants. Molecular analysis of the genetic changes in arbuscular mycorrhizal fungi during symbiosis allowed us to isolate a fungal cDNA clone encoding a H+-ATPase, GmPMA1, from Glomus mosseae (BEG12). Despite the high conservation of the catalytic domain from H+-ATPases, detailed analyses showed that GmPMA1 was strongly related only to a previously identified G. mosseae ATPase gene, GmHA5, and not to the other four ATPase genes known from this fungus. A developmentally regulated expression pattern could be shown for both genes, GmPMA1 and GmHA5. GmPMA1 was highly expressed during asymbiotic development, and its expression did not change when entering into symbiosis, whereas the GmHA5 transcript was induced upon plant recognition at the appressorium stage. Both genes maintained high levels of expression during intraradical development, but their expression was reduced in the extraradical mycelium. Phosphate, a key nutrient to the symbiosis, also induced the expression of GmHA5 during asymbiotic growth, whereas sucrose had a negative effect. Our results indicate that different fungal H+-ATPases isoforms might be recruited at different developmental stages possibly responding to the different requirements of the life in symbiosis.


Molecular Microbiology | 2003

The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans

Huijun Wei; Natalia Requena; Reinhard Fischer

Environmental signals can be transduced into intracellular responses by the action of MAP kinase cascades. Sequential phosphorylation results in the transient activation of a MAP kinase, which in turn activates certain transcription factors and thus a set of pathway‐specific genes. Many steps in this cascade are conserved, and homologues have been discovered from yeast to human. We have characterized the MAPKK kinase, SteC, a homologue of Saccharomyces cerevisiae Ste11, in the filamentous fungus Aspergillus nidulans. The 886‐amino‐acid‐long protein shares the highest similarity to Neurospora crassa Nrc‐1. Deletion of the gene in A. nidulans results in a slower growth rate, the formation of more branched hyphae, altered conidiophore morphology, an inhibition of heterokaryon formation and a block of cleistothecium development. The gene is transcriptionally activated during asexual development and controls the phosphorylation of two putative MAP kinases.


Molecular Plant-microbe Interactions | 1999

Molecular Characterization of GmFOX2, an Evolutionarily Highly Conserved Gene from the Mycorrhizal Fungus Glomus mosseae, Down-Regulated During Interaction with Rhizobacteria

Natalia Requena; Petra Füller; Philipp Franken

Arbuscular mycorrhizal (AM) fungi form the most wide-spread symbiosis of the plant kingdom. More than 80% of vascular plants are susceptible to colonization by the zygomycetous fungi from the order Glomales, and profit significantly by the nutrient exchange between plant and fungus. However, knowledge of the biology of these fungi still remains elusive because of their obligate biotrophism and, up to now, unculturability. The molecular mechanisms underlying the pre-symbiotic stages and the cell-to-cell communication between AM fungi and other soil microorganisms are, particularly, unknown. Here, we study these aspects by means of a molecular approach to monitor changes in the gene expression of the fungus Glomus mosseae (BEG12) in response to the rhizobacterium Bacillus subtilis NR1. The bacterium was found to induce specific increases in mycelial growth as well as changes in expression of GmFOX2, a highly conserved gene encoding a multifunctional protein of the peroxisomal beta-oxidation. We determined the gene structure and studied its expression in response to rhizobacteria at two time points. The results show that the fungus is able to change its gene expression in response to stimuli other than the plant.

Collaboration


Dive into the Natalia Requena's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reinhard Fischer

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hannah Kuhn

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Helber

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mohamed Hijri

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harris Shapiro

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

J. M. Barea

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge