Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Shpiro is active.

Publication


Featured researches published by Natalia Shpiro.


Biochemical Journal | 2007

The selectivity of protein kinase inhibitors: a further update.

Jenny Bain; Lorna Plater; Matthew Elliott; Natalia Shpiro; C. James Hastie; Hilary McLauchlan; Iva V. Klevernic; J. Simon C. Arthur; Dario R. Alessi; Philip Cohen

The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70-80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)-raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes.


The EMBO Journal | 2005

Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis

Edward J McManus; Kei Sakamoto; Laura J Armit; Leah Ronaldson; Natalia Shpiro; Rodolfo Marquez; Dario R. Alessi

The inactivation of glycogen synthase kinase (GSK)3 has been proposed to play important roles in insulin and Wnt signalling. To define the role that inactivation of GSK3 plays, we generated homozygous knockin mice in which the protein kinase B phosphorylation sites on GSK3α (Ser21) and GSK3β (Ser9) were changed to Ala. The knockin mice were viable and were not diabetic. Using these mice we show that inactivation of GSK3β rather than GSK3α is the major route by which insulin activates muscle glycogen synthase. In contrast, we demonstrate that the activation of muscle glycogen synthase by contraction, the stimulation of muscle glucose uptake by insulin, or the activation of hepatic glycogen synthase by glucose do not require GSK3 phosphorylation on Ser21/Ser9. GSK3 also becomes inhibited in the Wnt‐signalling pathway, by a poorly defined mechanism. In GSK3α/GSK3β homozygous knockin cells, Wnt3a induces normal inactivation of GSK3, as judged by the stabilisation of β‐catenin and stimulation of Wnt‐dependent transcription. These results establish the function of Ser21/Ser9 phosphorylation in several processes in which GSK3 inactivation has previously been implicated.


Biochemical Journal | 2008

Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice.

Xu Huang; Stephan Wullschleger; Natalia Shpiro; Victoria A. McGuire; Kei Sakamoto; Yvonne L. Woods; Wendy Mcburnie; Stewart Fleming; Dario R. Alessi

The LKB1 tumour suppressor phosphorylates and activates AMPK (AMP-activated protein kinase) when cellular energy levels are low, thereby suppressing growth through multiple pathways, including inhibiting the mTORC1 (mammalian target of rapamycin complex 1) kinase that is activated in the majority of human cancers. Blood glucose-lowering Type 2 diabetes drugs also induce LKB1 to activate AMPK, indicating that these compounds could be used to suppress growth of tumour cells. In the present study, we investigated the importance of the LKB1-AMPK pathway in regulating tumorigenesis in mice resulting from deficiency of the PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor, which drives cell growth through overactivation of the Akt and mTOR (mammalian target of rapamycin) kinases. We demonstrate that inhibition of AMPK resulting from a hypomorphic mutation that decreases LKB1 expression does not lead to tumorigenesis on its own, but markedly accelerates tumour development in PTEN(+/-) mice. In contrast, activating the AMPK pathway by administration of metformin, phenformin or A-769662 to PTEN(+/-) mice significantly delayed tumour onset. We demonstrate that LKB1 is required for activators of AMPK to inhibit mTORC1 signalling as well as cell growth in PTEN-deficient cells. Our findings highlight, using an animal model relevant to understanding human cancer, the vital role that the LKB1-AMPK pathway plays in suppressing tumorigenesis resulting from loss of the PTEN tumour suppressor. They also suggest that pharmacological inhibition of LKB1 and/or AMPK would be undesirable, at least for the treatment of cancers in which the mTORC1 pathway is activated. Most importantly, our results demonstrate the potential of AMPK activators, such as clinically approved metformin, as anticancer agents, which will suppress tumour development by triggering a physiological signalling pathway that potently inhibits cell growth.


Journal of Biological Chemistry | 2007

Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase

Olga Göransson; Andrew McBride; Simon A. Hawley; Fiona A. Ross; Natalia Shpiro; Marc Foretz; Benoit Viollet; D. Grahame Hardie; Kei Sakamoto

We have studied the mechanism of A-769662, a new activator of AMP-activated protein kinase (AMPK). Unlike other pharmacological activators, it directly activates native rat AMPK by mimicking both effects of AMP, i.e. allosteric activation and inhibition of dephosphorylation. We found that it has no effect on the isolated α subunit kinase domain, with or without the associated autoinhibitory domain, or on interaction of glycogen with the β subunit glycogen-binding domain. Although it mimics actions of AMP, it has no effect on binding of AMP to the isolated Bateman domains of the γ subunit. The addition of A-769662 to mouse embryonic fibroblasts or primary mouse hepatocytes stimulates phosphorylation of acetyl-CoA carboxylase (ACC), effects that are completely abolished in AMPK-α1–/–α2–/– cells but not in TAK1–/– mouse embryonic fibroblasts. Phosphorylation of AMPK and ACC in response to A-769662 is also abolished in isolated mouse skeletal muscle lacking LKB1, a major upstream kinase for AMPK in this tissue. However, in HeLa cells, which lack LKB1 but express the alternate upstream kinase calmodulin-dependent protein kinase kinase-β, phosphorylation of AMPK and ACC in response to A-769662 still occurs. These results show that in intact cells, the effects of A-769662 are independent of the upstream kinase utilized. We propose that this direct and specific AMPK activator will be a valuable experimental tool to understand the physiological roles of AMPK.


Biochemical Journal | 2004

Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3

James Murray; David G. Campbell; Nicholas A. Morrice; Gillian C. Auld; Natalia Shpiro; Rodolpho Marquez; Mark Peggie; Jenny Bain; Graham B. Bloomberg; Florian Grahammer; Florian Lang; Peer Wulff; Dietmar Kuhl; Philip Cohen

We detected a protein in rabbit skeletal muscle extracts that was phosphorylated rapidly by SGK1 (serum- and glucocorticoid-induced kinase 1), but not by protein kinase Ba, and identified it as NDRG2 (N-myc downstream-regulated gene 2). SGK1 phosphorylated NDRG2 at Thr330, Ser332 and Thr348 in vitro. All three residues were phosphorylated in skeletal muscle from wild-type mice, but not from mice that do not express SGK1. SGK1 also phosphorylated the related NDRG1 isoform at Thr328, Ser330 and Thr346 (equivalent to Thr330, Ser332 and Thr348 of NDRG2), as well as Thr356 and Thr366. Residues Thr346, Thr356 and Thr366 are located within identical decapeptide sequences GTRSRSHTSE, repeated three times in NDRG1. These threonines were phosphorylated in NDRG1 in the liver, lung, spleen and skeletal muscle of wild-type mice, but not in SGK1-/- mice. Knock-down of SGK1 in HeLa cells using small interfering RNA also suppressed phosphorylation of the threonine residues in the repeat region of NDRG1. The phosphorylation of NDRG1 by SGK1 transformed it into an excellent substrate for GSK3 (glycogen synthase kinase 3), which could then phosphorylate Ser342, Ser352 and Ser362 in the repeat region. Incubation of HeLa cells with the specific GSK3 inhibitor CT 99021 increased the electrophoretic mobility of NDRG1 in HeLa cells, demonstrating that this protein is phosphorylated by GSK3 in cells. Our results identify NDRG1 and NDRG2 as physiological substrates for SGK1, and demonstrate that phosphorylation of NDRG1 by SGK1 primes it for phosphorylation by GSK3.


Cell Cycle | 2007

VX-680 Inhibits Aurora A and Aurora B Kinase Activity in Human Cells

Rebecca K. Tyler; Natalia Shpiro; Rodolfo Marquez; Patrick A. Eyers

VX-680, also known as MK-0457, is a member of a diverse group of small molecules that inhibit the Aurora kinases, and has shown significant potential as an anti-cancer agent. In keeping with many protein kinase inhibitors, this compound is not a monospecific agent, and its cellular specificity remains largely unknown. In cells, VX-680 blocks mitotic Histone H3 phosphorylation and induces polyploidy and apoptosis, consistent with inhibition of the mitotic protein kinase Aurora B. In this study, we have investigated the effects of VX-680 in proliferating human cancer cells, and demonstrate that it blocks the phosphorylation and activation of both Aurora A and B. Additionally, VX-680 suppresses the phosphorylation of specific substrates of each enzyme, including the Aurora A target TACC3 on Ser558. Exposure to VX-680 induces a monopolar spindle phenotype, delays mitotic progression and rapidly overrides the spindle assembly checkpoint in the presence of spindle poisons. VX-680 also exhibits potent cytotoxicity when compared to the well documented Aurora B inhibitor ZM447439. Taken together, these data identify Aurora A and Aurora B as dual intracellular targets of VX-680.


Biochemical Journal | 2014

Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase

Ruzica Bago; Nazma Malik; Michael J. Munson; Alan R. Prescott; Paul Davies; Eeva M. Sommer; Natalia Shpiro; Darren Cross; Ian G. Ganley; Dario R. Alessi

The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50–60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80–90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K.


Biochemical Journal | 2013

The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system

Sam Strickson; David G. Campbell; Christoph H. Emmerich; Axel Knebel; Lorna Plater; Maria Stella Ritorto; Natalia Shpiro; Philip Cohen

The compound BAY 11-7082 inhibits IκBα [inhibitor of NF-κB (nuclear factor κB)α] phosphorylation in cells and has been used to implicate the canonical IKKs (IκB kinases) and NF-κB in >350 publications. In the present study we report that BAY 11-7082 does not inhibit the IKKs, but suppresses their activation in LPS (lipopolysaccharide)-stimulated RAW macrophages and IL (interleukin)-1-stimulated IL-1R (IL-1 receptor) HEK (human embryonic kidney)-293 cells. BAY 11-7082 exerts these effects by inactivating the E2-conjugating enzymes Ubc (ubiquitin conjugating) 13 and UbcH7 and the E3 ligase LUBAC (linear ubiquitin assembly complex), thereby preventing the formation of Lys63-linked and linear polyubiquitin chains. BAY 11-7082 prevents ubiquitin conjugation to Ubc13 and UbcH7 by forming a covalent adduct with their reactive cysteine residues via Michael addition at the C3 atom of BAY 11-7082, followed by the release of 4-methylbenzene-sulfinic acid. BAY 11-7082 stimulated Lys48-linked polyubiquitin chain formation in cells and protected HIF1α (hypoxia-inducible factor 1α) from proteasomal degradation, suggesting that it inhibits the proteasome. The results of the present study indicate that the anti-inflammatory effects of BAY 11-7082, its ability to induce B-cell lymphoma and leukaemic T-cell death and to prevent the recruitment of proteins to sites of DNA damage are exerted via inhibition of components of the ubiquitin system and not by inhibiting NF-κB.


Biochemical Journal | 2012

Changes in the ratio of free NEDD8 to ubiquitin triggers NEDDylation by ubiquitin enzymes

Roland Hjerpe; Yann Thomas; Jesse Chen; Aleksandra Zemla; Siobhan Curran; Natalia Shpiro; Lawrence R. Dick; Thimo Kurz

Ubiquitin and UBL (ubiquitin-like) modifiers are small proteins that covalently modify other proteins to alter their properties or behaviours. Ubiquitin modification (ubiquitylation) targets many substrates, often leading to their proteasomal degradation. NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8) is the UBL most closely related to ubiquitin, and its best-studied role is the activation of CRLs (cullin-RING ubiquitin ligases) by its conjugation to a conserved C-terminal lysine residue on cullin proteins. The attachment of UBLs requires three UBL-specific enzymes, termed E1, E2 and E3, which are usually well insulated from parallel UBL pathways. In the present study, we report a new mode of NEDD8 conjugation (NEDDylation) whereby the UBL NEDD8 is linked to proteins by ubiquitin enzymes in vivo. We found that this atypical NEDDylation is independent of classical NEDD8 enzymes, conserved from yeast to mammals, and triggered by an increase in the NEDD8 to ubiquitin ratio. In cells, NEDD8 overexpression leads to this type of NEDDylation by increasing the concentration of NEDD8, whereas proteasome inhibition has the same effect by depleting free ubiquitin. We show that bortezomib, a proteasome inhibitor used in cancer therapy, triggers atypical NEDDylation in tissue culture, which suggests that a similar process may occur in patients receiving this treatment.


Chemistry & Biology | 2014

Mechanism of Action of Compound-13: An α1-Selective Small Molecule Activator of AMPK

Roger W. Hunter; Marc Foretz; Morgan D. Fullerton; Maria Deak; Fiona A. Ross; Simon A. Hawley; Natalia Shpiro; Benoit Viollet; Denis Barron; Bruce E. Kemp; Gregory R. Steinberg; D. Grahame Hardie; Kei Sakamoto

Summary AMPK is a sensor of cellular energy status and a promising target for drugs aimed at metabolic disorders. We have studied the selectivity and mechanism of a recently described activator, C2, and its cell-permeable prodrug, C13. C2 was a potent allosteric activator of α1-complexes that, like AMP, also protected against Thr172 dephosphorylation. Compared with AMP, C2 caused only partial allosteric activation of α2-complexes and failed to protect them against dephosphorylation. We show that both effects could be fully restored by exchanging part of the linker between the autoinhibitory and C-terminal domains in α2, containing the equivalent region from α1 thought to interact with AMP bound in site 3 of the γ subunit. Consistent with our results in cell-free assays, C13 potently inhibited lipid synthesis in hepatocytes from wild-type and was largely ineffective in AMPK-knockout hepatocytes; its effects were more severely affected by knockout of α1 than of α2, β1, or β2.

Collaboration


Dive into the Natalia Shpiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Cuenda

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge