Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Suntsova is active.

Publication


Featured researches published by Natalia Suntsova.


The Journal of Physiology | 2003

Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats

Ruben Guzman-Marin; Natalia Suntsova; Darya Stewart; Hui Gong; Ronald Szymusiak; Dennis McGinty

The dentate gyrus (DG) of the adult hippocampus gives rise to progenitor cells, which have the potential to differentiate into neurons. To date it is not known whether sleep or sleep loss has any effect on proliferation of cells in the DG. Male rats were implanted for polysomnographic recording, and divided into treadmill sleep‐deprived (SD), treadmill control (TC) and cage control (CC) groups. SD and TC rats were kept for 96 h on a treadmill that moved either for 3 s on/12 s off (SD group) or for 15 min on/60 min off (TC group) to equate total movement but permit sustained rest periods in TC animals. To label proliferating cells the thymidine analogue 5‐bromo‐2′‐deoxyuridine (BrdU) was injected after the first 48 h of the experimental procedure in all groups (50 mg kg−1, i.p.). The percentage of time awake per day was 93.2 % in the SD group vs. 59.6 % in the TC group and 49.9 % in the CC group (P < 0.001). Stereological analysis showed that the number of BrdU‐positive cells in the DG of the dorsal hippocampus was reduced by 54 % in the SD group in comparison with the TC and by 68 % in comparison with the CC group. These results suggest that sleep deprivation reduces proliferation of cells in the DG of the dorsal hippocampus.


European Journal of Neuroscience | 2005

Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats

Ruben Guzman-Marin; Natalia Suntsova; Melvi Methippara; Richard Greiffenstein; Ronald Szymusiak; Dennis McGinty

We reported previously that 96 h of sleep deprivation (SD) reduced cell proliferation in the dentate gyrus (DG) of the hippocampus in adult rats. We now report that SD reduces the number of new cells expressing a mature neuronal marker, neuronal nuclear antigen (NeuN). Rats were sleep‐deprived for 96 h, using an intermittent treadmill system. Total sleep time was reduced to 6.9% by this method in SD animals, but total treadmill movement was equated in SD and treadmill control (CT) groups. Rats were allowed to survive for 3 weeks after 5‐bromo‐2‐deoxyuridine (BrdU) injection. The phenotype of BrdU‐positive cells in the DG was assessed by immunofluorescence and confocal microscopy. After 3 weeks the number of BrdU‐positive cells was reduced by 39.6% in the SD group compared with the CT. The percentage of cells that co‐localized BrdU and NeuN was also lower in the SD group (SD: 46.6 ± 1.8% vs. CT: 71.9 ± 2.1, P < 0.001). The percentages of BrdU‐labeled cells co‐expressing markers of immature neuronal (DCX) or glial (S100‐β) cells were not different in SD and CT groups. Thus, SD reduces neurogenesis in the DG by affecting both total proliferation and the percentage of cells expressing a mature neuronal phenotype. We hypothesize that sleep provides anabolic or signaling support for proliferation and cell fate determination.


Neuroscience | 2007

Hippocampal neurogenesis is reduced by sleep fragmentation in the adult rat

Ruben Guzman-Marin; Natalia Suntsova; Ronald Szymusiak; Dennis McGinty

The adult hippocampal dentate gyrus (DG) is a site of continuing neurogenesis. This process is influenced by a variety of physiological and experiential stimuli including total sleep deprivation (TSD). In humans, sleep fragmentation (SF) is a more common sleep condition than TSD. SF is associated with several prevalent diseases. We assessed a hypothesis that SF would suppress adult neurogenesis in the DG of the adult rat. An intermittent treadmill system was used; the treadmill was on for 3 s and off for 30 s (SF). For sleep fragmentation control (SFC), the treadmill was on for 15 min and off for 150 min. SF was conducted for three durations: 1, 4 and 7 days. To label proliferating cells, the thymidine analog, 5-bromo-2-deoxyuridine (BrdU), was injected 2 h prior to the end of each experiment. Expression of the intrinsic proliferative marker, Ki67, was also studied. SF rats exhibited an increased number of non-rapid eye movement (NREM) sleep bouts with no change in the percent of time spent in this stage. The numbers of both BrdU-positive cells and Ki67-positive cells were reduced by approximately 70% (P<0.05) in the SF groups after 4 and 7 days of experimental conditions whereas no differences were observed after 1 day. In a second experiment, we found that the percentage of new cells expressing a neuronal phenotype 3 weeks after BrdU administration was lower in the SF in comparison with the SFC group for all three durations of SF. We also examined the effects of SF on proliferation in adrenalectomized (ADX) animals, with basal corticosterone replacement. ADX SF animals exhibited a 55% reduction in the number of BrdU-positive cells when compared with ADX SFC. Thus, elevated glucocorticoids do not account for most of the reduction in cell proliferation induced by the SF procedure, although a small contribution of stress is not excluded. The results show that sustained SF induced marked reduction in hippocampal neurogenesis.


Neuroscience | 2010

Sustained Sleep Fragmentation Results in Delayed Changes in Hippocampal-Dependent Cognitive Function Associated with Reduced Dentate Gyrus Neurogenesis

Noemie Sportiche; Natalia Suntsova; Melvi Methippara; Tariq Bashir; Ben Mitrani; Ronald Szymusiak; Dennis McGinty

Sleep fragmentation (SF) is prevalent in human sleep-related disorders. In rats, sustained SF has a potent suppressive effect on adult hippocampal dentate gyrus (DG) neurogenesis. Adult-generated DG neurons progressively mature over several weeks, and participate in certain hippocampal-dependent cognitive functions. We predicted that suppression of neurogenesis by sustained SF would affect hippocampal-dependent cognitive functions in the time window when new neurons would reach functional maturity. Sprague-Dawley rats were surgically-prepared with electroencephalogram (EEG) and electromyogram (EMG) electrodes for sleep state detection. We induced sleep-dependent SF for 12 days, and compared SF animals to yoked sleep fragmentation controls (SFC), treadmill controls (TC) and cage controls (CC). Rats were injected with bromodeoxyuridine on treatment days 4 and 5. Rats were returned to home cages for 14 days. Cognitive performance was assessed in a Barnes maze with 5 days at a constant escape position followed by 2 days at a rotated position. After Barnes maze testing rats were perfused and DG sections were immunolabeled for BrdU and neuronal nuclear antigen (NeuN), a marker of mature neurons.SF reduced BrdU-labeled cell counts by 32% compared to SFC and TC groups. SF reduced sleep epoch duration, but amounts of rapid eye movement (REM) sleep did not differ between SF and SFC rats, and non-rapid eye movement (NREM) was reduced only transiently. In the Barnes maze, SF rats exhibited a progressive decrease in escape time, but were slower than controls. SF animals used different search strategies. The use of a random, non-spatial search strategy was significantly elevated in SF compared to the SFC, TC and CC groups. The use of random search strategies was negatively correlated with NREM sleep bout length during SF. Sustained sleep fragmentation reduced DG neurogenesis and induced use of a non-spatial search strategy, which could be seen 2 weeks after terminating the SF treatment. The reduction in neurogenesis induced by sleep fragmentation is likely to underlie the delayed changes in cognitive function.


Neurobiology of Disease | 2009

A role for the preoptic sleep-promoting system in absence epilepsy

Natalia Suntsova; Shalini Kumar; Ruben Guzman-Marin; Md. Noor Alam; Ronald Szymusiak; Dennis McGinty

Absence epilepsy (AE) in humans and the genetic AE model in WAG/Rij rats are both associated with abnormalities in sleep architecture that suggest insufficiency of the sleep-promoting mechanisms. In this study we compared the functionality of sleep-active neuronal groups within two well-established sleep-promoting sites, the ventrolateral and median preoptic nuclei (VLPO and MnPN, respectively), in WAG/Rij and control rats. Neuronal activity was assessed using c-Fos immunoreactivity and chronic single-unit recording techniques. We found that WAG/Rij rats exhibited a lack of sleep-associated c-Fos activation of GABAergic MnPN and VLPO neurons, a lower percentage of MnPN and VLPO cells increasing discharge during sleep and reduced firing rates of MnPN sleep-active neurons, compared to non-epileptic rats. The role of sleep-promoting mechanisms in pathogenesis of absence seizures was assessed in non-epileptic rats using electrical stimulation and chemical manipulations restricted to the MnPN. We found that fractional activation of the sleep-promoting system in waking was sufficient to elicit absence-like seizures. Given that reciprocally interrelated sleep-promoting and arousal neuronal groups control thalamocortical excitability, we hypothesize that malfunctioning of sleep-promoting system results in impaired ascending control over thalamocortical rhythmogenic mechanisms during wake-sleep transitions thus favoring aberrant thalamocortical oscillations. Our findings suggest a pathological basis for AE-associated sleep abnormalities and a mechanism underlying association of absence seizures with wake-sleep transitions.


Neuroscience | 2010

GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats.

Md. Noor Alam; Sunil Kumar; Natalia Suntsova; Ronald Szymusiak; Dennis McGinty

The perifornical-lateral hypothalamic area (PF-LHA) has been implicated in the regulation of behavioral arousal. The PF-LHA predominantly contains neurons that are active during behavioral and cortical activation and quiescent during non-rapid eye movement (nonREM) sleep, that is, are nonREM-off neurons. Some in vitro and in vivo studies indicate that PF-LHA neurons, including hypocretin-expressing neurons, are under GABAergic control. However, a role of GABA in suppressing the discharge of PF-LHA neurons during spontaneous nonREM sleep has not been confirmed. We recorded the sleep-wake discharge profiles of PF-LHA neurons and simultaneously assessed the contributions of local GABA(A) receptor activation and blockade on their wake- and nonREM sleep-related discharge activities by delivering GABA(A) receptor agonist, muscimol (500 nm, 5 microM, and 10 microM) and its antagonist, bicuculline (5 microM, 10 microM, and 20 microM), adjacent to the recorded neurons via reverse microdialysis. Muscimol dose-dependently decreased the discharge of PF-LHA neurons including nonREM-off neurons. Muscimol-induced suppression of discharge during nonREM sleep was significantly weaker than the suppression produced during waking. In the presence of bicuculline, PF-LHA neurons, including nonREM-off neurons, exhibited elevated discharge, which was dose-dependent and was significantly higher during nonREM sleep, compared to waking. These results suggest that GABA(A) receptor mediated increased GABAergic tone contributes to the suppression of PF-LHA neurons, including nonREM-off neurons, during spontaneous nonREM sleep.


Brain Research | 2008

Inactivation of median preoptic nucleus causes c-Fos expression in hypocretin- and serotonin-containing neurons in anesthetized rat

Sunil Kumar; Ronald Szymusiak; Natalia Suntsova; Seema Rai; Dennis McGinty; Md. Noor Alam

The median preoptic nucleus (MnPN) of the hypothalamus contains sleep-active neurons including sleep-active GABAergic neurons and is involved in the regulation of nonREM/REM sleep. The hypocretinergic (HCRT) neurons of the perifornical-lateral hypothalamic area (PF-LHA) and serotonergic (5-HT) neurons of the dorsal raphe nucleus (DRN) are mostly active during waking and have been implicated in the regulation of arousal. MnPN GABAergic neurons project to the PF-LHA and DRN. It is hypothesized that MnPN promotes sleep by inhibiting multiple arousal systems including HCRT and other wake-active neurons within the PF-LHA and 5-HT neurons in the DRN. We examined the effects of inactivation of MnPN neurons by locally microinjecting 0.2 microl of 1 mM or 10 mM solutions of a GABA(A) receptor agonist, muscimol, into the MnPN on Fos expression (Fos-IR) in the PF-LHA neurons including HCRT neurons and 5-HT neurons in the DRN in anesthetized rats. Compared to artificial cerebrospinal fluid control, microinjection of muscimol into the MnPN resulted in significantly higher percentages of HCRT and non-HCRT neurons in the PF-LHA and 5-HT neurons in the DRN that exhibited Fos-IR. The percentage of melanin-concentrating hormone (MCH)+/Fos+ neurons in the PF-LHA did not change after muscimol treatments. These results support a hypothesis that the activation of MnPN neurons contributes to the suppression of wake-promoting systems including HCRT and other unidentified neurons in the PF-LHA and 5-HT neurons in the DRN. These results also suggest that MCH neurons may not be under MnPN inhibitory control. These findings are consistent with a hypothesized role of MnPN in sleep regulation.


Journal of Sleep Research | 2010

Hippocampal adult neurogenesis is enhanced by chronic eszopiclone treatment in rats.

Melvi Methippara; Tariq Bashir; Natalia Suntsova; Ronald Szymusiak; Dennis McGinty

The adult hippocampal dentate gyrus (DG) exhibits cell proliferation and neurogenesis throughout life. We examined the effects of daily administration of eszopiclone (Esz), a commonly used hypnotic drug and γ‐aminobutyric acid (GABA) agonist, compared with vehicle, on DG cell proliferation and neurogenesis, and on sleep–wake patterns. Esz was administered during the usual sleep period of rats, to mimic typical use in humans. Esz treatment for 7 days did not affect the rate of cell proliferation, as measured by 5‐bromo‐2′‐deoxyuridine (BrdU) immunostaining. However, twice‐daily Esz administration for 2 weeks increased survival of newborn cells by 46%. Most surviving cells exhibited a neuronal phenotype, identified as BrdU–neuronal nuclei (NeuN) double‐labeling. NeuN is a marker of neurons. Non‐rapid eye movement sleep was increased on day 1, but not on days 7 or 14 of Esz administration. Delta electroencephalogram activity was increased on days 1 and 7 of treatment, but not on day 14. There is evidence that enhancement of DG neurogenesis is a critical component of the effects of antidepressant treatments of major depressive disorder (MDD). Adult‐born DG cells are responsive to GABAergic stimulation, which promotes cell maturation. The present study suggests that Esz, presumably acting as a GABA agonist, has pro‐neurogenic effects in the adult DG. This result is consistent with evidence that Esz enhances the antidepressant treatment response of patients with MDD with insomnia.


Journal of Neurophysiology | 2017

The Role of Adenosine in the Maturation of Sleep Homeostasis in Rats.

Irma Gvilia; Natalia Suntsova; Andrey Kostin; Anna V. Kalinchuk; Dennis McGinty; Radhika Basheer; Ronald Szymusiak

Sleep homeostasis in rats undergoes significant maturational changes during postweaning development, but the underlying mechanisms of this process are unknown. In the present study we tested the hypothesis that the maturation of sleep is related to the functional emergence of adenosine (AD) signaling in the brain. We assessed postweaning changes in 1) wake-related elevation of extracellular AD in the basal forebrain (BF) and adjacent lateral preoptic area (LPO), and 2) the responsiveness of median preoptic nucleus (MnPO) sleep-active cells to increasing homeostatic sleep drive. We tested the ability of exogenous AD to augment homeostatic responses to sleep deprivation (SD) in newly weaned rats. In groups of postnatal day (P)22 and P30 rats, we collected dialysate from the BF/LPO during baseline (BSL) wake-sleep, SD, and recovery sleep (RS). HPLC analysis of microdialysis samples revealed that SD in P30 rats results in significant increases in AD levels compared with BSL. P22 rats do not exhibit changes in AD levels in response to SD. We recorded neuronal activity in the MnPO during BSL, SD, and RS at P22/P30. MnPO neurons exhibited adult-like increases in waking neuronal discharge across SD on both P22 and P30, but discharge rates during enforced wake were higher on P30 vs. P22. Central administration of AD (1 nmol) during SD on P22 resulted in increased sleep time and EEG slow-wave activity during RS compared with saline control. Collectively, these findings support the hypothesis that functional reorganization of an adenosinergic mechanism of sleep regulation contributes to the maturation of sleep homeostasis. NEW & NOTEWORTHY Brain mechanisms that regulate the maturation of sleep are understudied. The present study generated first evidence about a potential mechanistic role for adenosine in the maturation of sleep homeostasis. Specifically, we demonstrate that early postweaning development in rats, when homeostatic response to sleep loss become adult like, is characterized by maturational changes in wake-related production/release of adenosine in the brain. Pharmacologically increased adenosine signaling in developing brain facilitates homeostatic responses to sleep deprivation.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Suppression of preoptic sleep-regulatory neuronal activity during corticotropin-releasing factor-induced sleep disturbance

Irma Gvilia; Natalia Suntsova; Sunil Kumar; Dennis McGinty; Ronald Szymusiak

Corticotropin releasing factor (CRF) is implicated in sleep and arousal regulation. Exogenous CRF causes sleep suppression that is associated with activation of at least two important arousal systems: pontine noradrenergic and hypothalamic orexin/hypocretin neurons. It is not known whether CRF also impacts sleep-promoting neuronal systems. We hypothesized that CRF-mediated changes in wake and sleep involve decreased activity of hypothalamic sleep-regulatory neurons localized in the preoptic area. To test this hypothesis, we examined the effects of intracerebroventricular administration of CRF on sleep-wake measures and c-Fos expression in GABAergic neurons in the median preoptic nucleus (MnPN) and ventrolateral preoptic area (VLPO) in different experimental conditions. Administration of CRF (0.1 nmol) during baseline rest phase led to delayed sleep onset and decreases in total amount and mean duration of non-rapid eye movement (NREM) sleep. Administration of CRF during acute sleep deprivation (SD) resulted in suppression of recovery sleep and decreased c-Fos expression in MnPN/VLPO GABAergic neurons. Compared with vehicle controls, intracerebroventricular CRF potentiated disturbances of both NREM and REM sleep in rats exposed to a species-specific psychological stressor, the dirty cage of a male conspecific. The number of MnPN/VLPO GABAergic neurons expressing c-Fos was reduced in the CRF-treated group of dirty cage-exposed rats. These findings confirm the involvement of CRF in wake-sleep cycle regulation and suggest that increased CRF signaling in the brain 1) negatively affects homeostatic responses to sleep loss, 2) exacerbates stress-induced disturbances of sleep, and 3) suppresses the activity of sleep-regulatory neurons of the MnPN and VLPO.

Collaboration


Dive into the Natalia Suntsova's collaboration.

Top Co-Authors

Avatar

Dennis McGinty

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Md. Noor Alam

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irma Gvilia

University of California

View shared research outputs
Top Co-Authors

Avatar

Tariq Bashir

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Anna V. Kalinchuk

VA Boston Healthcare System

View shared research outputs
Top Co-Authors

Avatar

Ben Mitrani

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge