Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Toporikova is active.

Publication


Featured researches published by Natalia Toporikova.


Journal of Neurophysiology | 2009

SK Channels Gate Information Processing In Vivo by Regulating an Intrinsic Bursting Mechanism Seen In Vitro

Natalia Toporikova; Maurice J. Chacron

Understanding the mechanistic substrates of neural computations that lead to behavior remains a fundamental problem in neuroscience. In particular, the contributions of intrinsic neural properties such as burst firing and dendritic morphology to the processing of behaviorally relevant sensory input have received much interest recently. Pyramidal cells within the electrosensory lateral line lobe of weakly electric fish display an intrinsic bursting mechanism that relies on somato-dendritic interactions when recorded in vitro: backpropagating somatic action potentials trigger dendritic action potentials that lead to a depolarizing afterpotential (DAP) at the soma. We recorded intracellularly from these neurons in vivo and found firing patterns that were quite different from those seen in vitro: we found no evidence for DAPs as each somatic action potential was followed by a pronounced afterhyperpolarization (AHP). Calcium chelators injected in vivo reduced the AHP, thereby unmasking the DAP and inducing in vitro-like bursting in pyramidal cells. These bursting dynamics significantly reduced the cells ability to encode the detailed time course of sensory input. We performed additional in vivo pharmacological manipulations and mathematical modeling to show that calcium influx through N-methyl-d-aspartate (NMDA) receptors activate dendritic small conductance (SK) calcium-activated potassium channels, which causes an AHP that counteracts the DAP and leads to early termination of the burst. Our results show that ion channels located in dendrites can have a profound influence on the processing of sensory input by neurons in vivo through the modulation of an intrinsic bursting mechanism.


Journal of Computational Neuroscience | 2007

Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents

Joël Tabak; Natalia Toporikova; Marc E. Freeman; Richard Bertram

Dopamine (DA) released from the hypothalamus tonically inhibits pituitary lactotrophs. DA (at micromolar concentration) opens potassium channels, hyperpolarizing the lactotrophs and thus preventing the calcium influx that triggers prolactin hormone release. Surprisingly, at concentrations ∼1000 lower, DA can stimulate prolactin secretion. Here, we investigated whether an increase in a K+ current could mediate this stimulatory effect. We considered the fast K+ currents flowing through large-conductance BK channels and through A-type channels. We developed a minimal lactotroph model to investigate the effects of these two currents. Both IBK and IA could transform the electrical pattern of activity from spiking to bursting, but through distinct mechanisms. IBK always increased the intracellular Ca2+ concentration, while IA could either increase or decrease it. Thus, the stimulatory effects of DA could be mediated by a fast K+ conductance which converts tonically spiking cells to bursters. In addition, the study illustrates that a heterogeneous distribution of fast K+ conductances could cause heterogeneous lactotroph firing patterns.


Journal of Computational Neuroscience | 2011

Two types of independent bursting mechanisms in inspiratory neurons: an integrative model

Natalia Toporikova; Robert J. Butera

The network of coupled neurons in the pre-Bötzinger complex (pBC) of the medulla generates a bursting rhythm, which underlies the inspiratory phase of respiration. In some of these neurons, bursting persists even when synaptic coupling in the network is blocked and respiratory rhythmic discharge stops. Bursting in inspiratory neurons has been extensively studied, and two classes of bursting neurons have been identified, with bursting mechanism depends on either persistent sodium current or changes in intracellular Ca2+, respectively. Motivated by experimental evidence from these intrinsically bursting neurons, we present a two-compartment mathematical model of an isolated pBC neuron with two independent bursting mechanisms. Bursting in the somatic compartment is modeled via inactivation of a persistent sodium current, whereas bursting in the dendritic compartment relies on Ca2+ oscillations, which are determined by the neuromodulatory tone. The model explains a number of conflicting experimental results and is able to generate a robust bursting rhythm, over a large range of parameters, with a frequency adjusted by neuromodulators.


Neural Computation | 2008

A-type k+ current can act as a trigger for bursting in the absence of a slow variable

Natalia Toporikova; Joël Tabak; Marc E. Freeman; Richard Bertram

Models of bursting in single cells typically include two subsystems with different timescales. Variations in one or more slow variables switch the system between a silent and a spiking state. We have developed a model for bursting in the pituitary lactotroph that does not include any slow variable. The model incorporates fast, noninactivating calcium and potassium currents (the spike-generating mechanism), as well as the fast, inactivating A-type potassium current (IA). IA is active only briefly at the beginning of a burst, but this brief impulse of IA acts as a burst trigger, injecting the spike trajectory close to an unstable steady state. The spiraling of the trajectory away from the steady state produces a period of low-amplitude spiking typical of lactotrophs. Increasing the conductance of A-type potassium current brings the trajectory closer to the unstable steady state, increasing burst duration. However, this also increases interburst interval, and for larger conductance values, all activity stops. To our knowledge, this is the first example of a physiologically based, single-compartmental model of bursting with no slow subsystem.


Endocrinology | 2015

KNDy Neurons Modulate the Magnitude of the Steroid-Induced Luteinizing Hormone Surges in Ovariectomized Rats

Cleyde V. Helena; Natalia Toporikova; Bruna Kalil; Andrea M. Stathopoulos; Veronika V. Pogrebna; Ruither Oliveira Gomes Carolino; Janete A. Anselmo-Franci; Richard Bertram

Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.


Science Signaling | 2006

Endothelin Action on Pituitary Lactotrophs: One Receptor, Many GTP-Binding Proteins

Richard Bertram; Joël Tabak; Natalia Toporikova; Marc E. Freeman

The endothelins are a family of hormones that have a biphasic action on pituitary lactotrophs. The initial effect is stimulatory, followed later by inhibition that persists long after the agonist has been removed. Recent research has uncovered several G protein pathways that mediate these effects.


eNeuro | 2015

Sigh and Eupnea Rhythmogenesis Involve Distinct Interconnected Subpopulations: A Combined Computational and Experimental Study ,,

Natalia Toporikova; Marc Chevalier; Muriel Thoby-Brisson

How a single neural network can generate several rhythmic activities at different time scales remains an open question. Here, in addition to the already described reconfiguring process, we propose a new mechanism by which the respiratory network can generate simultaneously two distinct inspiration-related activities (eupnea and sigh) at different frequencies. Abstract Neural networks control complex motor outputs by generating several rhythmic neuronal activities, often with different time scales. One example of such a network is the pre-Bötzinger complex respiratory network (preBötC) that can simultaneously generate fast, small-amplitude, monophasic eupneic breaths together with slow, high-amplitude, biphasic augmented breaths (sighs). However, the underlying rhythmogenic mechanisms for this bimodal discharge pattern remain unclear, leaving two possible explanations: the existence of either reconfiguring processes within the same network or two distinct subnetworks. Based on recent in vitro data obtained in the mouse embryo, we have built a computational model consisting of two compartments, interconnected through appropriate synapses. One compartment generates sighs and the other produces eupneic bursts. The model reproduces basic features of simultaneous sigh and eupnea generation (two types of bursts differing in terms of shape, amplitude, and frequency of occurrence) and mimics the effect of blocking glycinergic synapses. Furthermore, we used this model to make predictions that were subsequently tested on the isolated preBötC in mouse brainstem slice preparations. Through a combination of in vitro and in silico approaches we find that (1) sigh events are less sensitive to network excitability than eupneic activity, (2) calcium-dependent mechanisms and the Ih current play a prominent role in sigh generation, and (3) specific parameters of Ih activation set the low sensitivity to excitability in the sigh neuronal subset. Altogether, our results strongly support the hypothesis that distinct subpopulations within the preBötC network are responsible for sigh and eupnea rhythmogenesis.


Algebraic and Discrete Mathematical Methods for Modern Biology | 2015

Transmission of Infectious Diseases: Data, Models, and Simulations

Winfried Just; Hannah Lea Callender; M. Drew LaMar; Natalia Toporikova

Abstract This chapter introduces students to various aspects of mathematical modeling in epidemiology, including data collection, development of models, and deriving and interpreting predictions of models. The agent-based models of this chapter are explored by using a teaching tool, IONTW (Infections On NeTWorks), which was developed by the authors using the NetLogo programming language. The chapter discusses in detail the process of building mathematical models of disease transmission. Students will frequently be challenged to critically examine the simplifying assumptions that are involved in this process. It also provides an intuitive introduction to thinking about simulation models in terms of pseudocode, intended to empower students who have no prior knowledge of computer programming to analyze simulation models at a semiformal level. The chapter includes numerous conceptual and simulation exercises aimed at developing deeper understanding of the concepts.


eLife | 2016

Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network

Marc Chevalier; Natalia Toporikova; John Simmers; Muriel Thoby-Brisson

Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons. DOI: http://dx.doi.org/10.7554/eLife.16125.001


Respiratory Physiology & Neurobiology | 2013

Dynamics of neuromodulatory feedback determines frequency modulation in a reduced respiratory network: A computational study

Natalia Toporikova; Robert J. Butera

Neuromodulators, such as amines and neuropeptides, alter the activity of neurons and neuronal networks. In this work, we investigate how neuromodulators, which activate G(q)-protein second messenger systems, can modulate the bursting frequency of neurons in a critical portion of the respiratory neural network, the pre-Bötzinger complex (preBötC). These neurons are a vital part of the ponto-medullary neuronal network, which generates a stable respiratory rhythm whose frequency is regulated by neuromodulator release from the nearby Raphe nucleus. Using a simulated 50-cell network of excitatory preBötC neurons with a heterogeneous distribution of persistent sodium conductance and Ca(2+), we determined conditions for frequency modulation in such a network by simulating interaction between Raphe and preBötC nuclei. We found that the positive feedback between the Raphe excitability and preBötC activity induces frequency modulation in the preBötC neurons. In addition, the frequency of the respiratory rhythm can be regulated via phasic release of excitatory neuromodulators from the Raphe nucleus. We predict that the application of a G(q) antagonist will eliminate this frequency modulation by the Raphe and keep the network frequency constant and low. In contrast, application of a G(q) agonist will result in a high frequency for all levels of Raphe stimulation. Our modeling results also suggest that high [K(+)] requirement in respiratory brain slice experiments may serve as a compensatory mechanism for low neuromodulatory tone.

Collaboration


Dive into the Natalia Toporikova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joël Tabak

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Egli

Lucerne University of Applied Sciences and Arts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge