Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Toro is active.

Publication


Featured researches published by Natalia Toro.


Physical Review D | 2009

New Fixed-Target Experiments to Search for Dark Gauge Forces

James D. Bjorken; Rouven Essig; Philip Schuster; Natalia Toro

Fixed-target experiments are ideally suited for discovering new MeV-GeV mass U(1) gauge bosons through their kinetic mixing with the photon. In this paper, we identify the production and decay properties of new light gauge bosons that dictate fixed-target search strategies. We summarize existing limits and suggest five new experimental approaches that we anticipate can cover most of the natural parameter space, using currently operating GeV-energy beams and well-established detection methods. Such experiments are particularly timely in light of recent terrestrial and astrophysical anomalies (PAMELA, Fermi, DAMA/LIBRA, etc.) consistent with dark matter charged under a new gauge force.


Physical Review D | 2009

Simplified models for a first characterization of new physics at the LHC

Johan Alwall; Philip Schuster; Natalia Toro

Low-energy SUSY and several other theories that address the hierarchy problem predict pair-production at the LHC of particles with Standard Model quantum numbers that decay to jets, missing energy, and possibly leptons. If an excess of such events is seen in LHC data, a theoretical framework in which to describe it will be essential to constraining the structure of the new physics. We propose a basis of four deliberately simplified models, each specified by only 2-3 masses and 4-5 branching ratios, for use in a first characterization of data. Fits of these simplified models to the data furnish a quantitative presentation of the jet structure, electroweak decays, and heavy-flavor content of the data, independent of detector effects. These fits, together with plots comparing their predictions to distributions in data, can be used as targets for describing the data within any full theoretical model.


Physical Review D | 2009

Probing Dark Forces and Light Hidden Sectors at Low-Energy e+e- Colliders

Rouven Essig; Philip Schuster; Natalia Toro

A dark sector - a new non-Abelian gauge group Higgsed or confined near the GeV scale - can be spectacularly probed in low-energy e{sup +}e{sup -} collisions. A low-mass dark sector can explain the annual modulation signal reported by DAMA/LIBRA and the PAMELA, ATIC, and INTEGRAL observations by generating small mass splittings and new interactions for weak-scale dark matter. Some of these observations may be the first signs of a low-mass dark sector that collider searches can definitively confirm. Production and decay of {Omicron}(GeV)-mass dark states is mediated by a Higgsed Abelian gauge boson that mixes kinetically with hypercharge. Existing data from BaBar, BELLE, CLEO-c, and KLOE may contain thousands of striking dark-sector events with a high multiplicity of leptons that reconstruct mass resonances and possibly displaced vertices. We discuss the production and decay phenomenology of Higgsed and confined dark sectors and propose e{sup +}e{sup -} collider search strategies. We also use the DAMA/LIBRA signal to estimate the production cross-sections and decay lifetimes for dark-sector states.


Physical Review Letters | 2011

Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment

S. Abrahamyan; Z. Ahmed; K. Allada; D. Anez; T. Averett; A. Barbieri; K. Bartlett; James Beacham; J. Bono; J.R. Boyce; P. Brindza; A. Camsonne; K. Cranmer; M. M. Dalton; C. W. de Jager; J. Donaghy; Rouven Essig; C. Field; E. Folts; A. Gasparian; N. Goeckner-Wald; Jonatan Piedra Gomez; M. Graham; J.-O. Hansen; D. W. Higinbotham; T. Holmstrom; Jung-Yun Huang; S. Iqbal; John Jaros; E. Jensen

S. Abrahamyan,1 Z. Ahmed,2 K. Allada,3 D. Anez,4 T. Averett,5 A. Barbieri,6 K. Bartlett,7 J. Beacham,8 J. Bono,9 J.R. Boyce,10 P. Brindza,10 A. Camsonne,10 K. Cranmer,8 M.M. Dalton,6 C.W. de Jager,10, 6 J. Donaghy,7 R. Essig,11, ∗ C. Field,11 E. Folts,10 A. Gasparian,12 N. Goeckner-Wald,13 J. Gomez,10 M. Graham,11 J.-O. Hansen,10 D.W. Higinbotham,10 T. Holmstrom,14 J. Huang,15 S. Iqbal,16 J. Jaros,11 E. Jensen,5 A. Kelleher,15 M. Khandaker,17, 10 J.J. LeRose,10 R. Lindgren,6 N. Liyanage,6 E. Long,18 J. Mammei,19 P. Markowitz,9 T. Maruyama,11 V. Maxwell,9 S. Mayilyan,1 J. McDonald,11 R. Michaels,10 K. Moffeit,11 V. Nelyubin,6 A. Odian,11 M. Oriunno,11 R. Partridge,11 M. Paolone,20 E. Piasetzky,21 I. Pomerantz,21 Y. Qiang,10 S. Riordan,19 Y. Roblin,10 B. Sawatzky,10 P. Schuster,11, 22, † J. Segal,10 L. Selvy,18 A. Shahinyan,1 R. Subedi,23 V. Sulkosky,15 S. Stepanyan,10 N. Toro,24, 22, ‡ D. Walz,11 B. Wojtsekhowski,10, § and J. Zhang10 Yerevan Physics Institute, Yerevan 375036, Armenia Syracuse University, Syracuse, New York 13244 University of Kentucky, Lexington, Kentucky 40506 Saint Mary’s University, Halifax, NS B3H 3C3, Canada College of William and Mary, Williamsburg, Virginia 23187 University of Virginia, Charlottesville, Virginia 22903 University of New Hampshire, Durham, New Hampshire 03824 New York University, New York, New York 10012 Florida International University, Miami, Florida 33199 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 SLAC National Accelerator Laboratory, Menlo Park, California 94025 North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Longwood University, Farmville, Virginia 23909 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 California State University at Los Angeles, Los Angeles, California 90032 Norfolk State University, Norfolk, Virginia 23504 Kent State University, Kent, Ohio 44242 University of Massachusetts, Amherst, Massachusetts 01003 University of South Carolina, Columbia, South Carolina 29225 Tel Aviv University, Tel Aviv, 69978 Israel Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada George Washington University, Washington DC 20052 Stanford University, Menlo Park, California 94025 (Dated: February 1, 2013)


arXiv: High Energy Physics - Phenomenology | 2007

MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories

Nima Arkani-Hamed; Philip Schuster; Stephen Mrenna; Lian-Tao Wang; Jesse Thaler; Bruce Knuteson; Natalia Toro

We describe a coherent strategy and set of tools for reconstructing the fundamental theory of the TeV scale from LHC data. We show that On-Shell Effective Theories (OSETs) effectively characterize hadron collider data in terms of masses, production cross sections, and decay modes of candidate new particles. An OSET description of the data strongly constrains the underlying new physics, and sharply motivates the construction of its Lagrangian. Simulating OSETs allows efficient analysis of new-physics signals, especially when they arise from complicated production and decay topologies. To this end, we present MARMOSET, a Monte Carlo tool for simulating the OSET version of essentially any new-physics model. MARMOSET enables rapid testing of theoretical hypotheses suggested by both data and model-building intuition, which together chart a path to the underlying theory. We illustrate this process by working through a number of data challenges, where the most important features of TeV-scale physics are reconstructed with as little as 5 fb{sup -1} of simulated LHC signals.


Physical Review D | 2010

Discovering New Light States at Neutrino Experiments

Rouven Essig; Roni Harnik; Jared Kaplan; Natalia Toro

Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovae constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.


Journal of High Energy Physics | 2011

An electron fixed target experiment to search for a new vector boson A′ decaying to e+e−

Rouven Essig; Philip Schuster; Natalia Toro; Bogdan Wojtsekhowski

We describe an experiment to search for a new vector boson A′ with weak coupling α′ ≳ 6 × 10−8α to electrons (α = e2/4π) in the mass range 65 MeV < mA′ < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the “dark photon” A′ with the photon — one of the very few ways in which new forces can couple to the Standard Model — and have received considerable attention as an explanation of various dark matter related anomalies. A′ bosons are produced by radiation off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e+e− spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory’s PAC35, PR-10-009 [1]. This experiment, the A′ Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ≈ 1–4 GeV incident on 0:5 − 10% radiation length Tungsten multi-foil targets, and measures the resulting e+e− pairs to search for the A′ using the High Resolution Spectrometer and the septum magnet in Hall A. With a ∼ 1 month run, APEX will achieve very good sensitivity because the statistics of e+e− pairs will be ∼ 10,000 times larger in the explored mass range than any previous search for the A′ boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to α′/α one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.


Journal of High Energy Physics | 2009

Constructing the tree-level Yang-Mills S-matrix using complex factorization

Philip Schuster; Natalia Toro

A remarkable connection between BCFW recursion relations and constraints on the S-matrix was made by Benincasa and Cachazo in 0705.4305, who noted that mutual consistency of different BCFW constructions of four-particle amplitudes generates non-trivial (but familiar) constraints on three-particle coupling constants — these include gauge invariance, the equivalence principle, and the lack of non-trivial couplings for spins > 2. These constraints can also be derived with weaker assumptions, by demanding the existence of four-point amplitudes that factorize properly in all unitarity limits with complex momenta. From this starting point, we show that the BCFW prescription can be interpreted as an algorithm for fully constructing a tree-level S-matrix, and that complex factorization of general BCFW amplitudes follows from the factorization of four-particle amplitudes. The allowed set of BCFW deformations is identified, formulated entirely as a statement on the three-particle sector, and using only complex factorization as a guide. Consequently, our analysis based on the physical consistency of the S-matrix is entirely independent of field theory. We analyze the case of pure Yang-Mills, and outline a proof for gravity. For Yang-Mills, we also show that the well-known scaling behavior of BCFW-deformed amplitudes at large z is a simple consequence of factorization. For gravity, factorization in certain channels requires asymptotic behavior ~ 1/z2.


Journal of High Energy Physics | 2012

Study of LHC searches for a lepton and many jets

Mariangela Lisanti; Philip Schuster; Matthew J. Strassler; Natalia Toro

A bstractSearches for new physics in high-multiplicity events with little or no missing energy are an important component of the LHC program, complementary to analyses that rely on missing energy. We consider the potential reach of searches for events with a lepton and six or more jets, and show they can provide increased sensitivity to many supersymmetric and exotic models that would not be detected through standard missing-energy analyses. Among these are supersymmetric models with gauge mediation, R-parity violation, and light hidden sectors. Moreover, ATLAS and CMS measurements suggest the primary background in this channel is from


Physical Review Letters | 2015

Analyzing the Discovery Potential for Light Dark Matter.

Eder Izaguirre; Gordan Krnjaic; Philip Schuster; Natalia Toro

t\overline{t}

Collaboration


Dive into the Natalia Toro's collaboration.

Top Co-Authors

Avatar

Philip Schuster

Perimeter Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordan Krnjaic

Perimeter Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bogdan Wojtsekhowski

Thomas Jefferson National Accelerator Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Battaglieri

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

C. Field

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

F. X. Girod

Old Dominion University

View shared research outputs
Researchain Logo
Decentralizing Knowledge