Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia V. Ivanova is active.

Publication


Featured researches published by Natalia V. Ivanova.


Philosophical Transactions of the Royal Society B | 2005

Critical factors for assembling a high volume of DNA barcodes

Mehrdad Hajibabaei; Jeremy R. deWaard; Natalia V. Ivanova; Sujeevan Ratnasingham; Robert T. Dooh; Stephanie L. Kirk; Paula M. Mackie; Paul D. N. Hebert

Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified.


Nucleic Acids Research | 2003

The ERGOTM genome analysis and discovery system

Ross Overbeek; Niels Bent Larsen; Theresa L. Walunas; Mark D'Souza; Gordon D. Pusch; Eugene Selkov; Konstantinos Liolios; Viktor Joukov; Denis Kaznadzey; Iain Anderson; Anamitra Bhattacharyya; Henry Burd; Warren Gardner; Paul Hanke; Vinayak Kapatral; Natalia Mikhailova; Olga Vasieva; Andrei L. Osterman; Veronika Vonstein; Michael Fonstein; Natalia V. Ivanova; Nikos C. Kyrpides

The ERGO (http://ergo.integratedgenomics.com/ERGO/) genome analysis and discovery suite is an integration of biological data from genomics, biochemistry, high-throughput expression profiling, genetics and peer-reviewed journals to achieve a comprehensive analysis of genes and genomes. Far beyond any conventional systems that facilitate functional assignments, ERGO combines pattern-based analysis with comparative genomics by visualizing genes within the context of regulation, expression profiling, phylogenetic clusters, fusion events, networked cellular pathways and chromosomal neighborhoods of other functionally related genes. The result of this multifaceted approach is to provide an extensively curated database of the largest available integration of genomes, with a vast collection of reconstructed cellular pathways spanning all domains of life. Although access to ERGO is provided only under subscription, it is already widely used by the academic community. The current version of the system integrates 500 genomes from all domains of life in various levels of completion, 403 of which are available for subscription.


PLOS ONE | 2010

The role of DNA barcodes in understanding and conservation of mammal diversity in southeast Asia.

Charles M. Francis; Alex V. Borisenko; Natalia V. Ivanova; Judith L. Eger; Burton K. Lim; Antonio Guillén-Servent; Sergei V. Kruskop; Iain Mackie; Paul D. N. Hebert

Background Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning. Methodology and Principal Findings DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized. Conclusions DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning.


Molecular Ecology Resources | 2008

DNA barcoding in surveys of small mammal communities: a field study in Suriname.

Alex V. Borisenko; Burton K. Lim; Natalia V. Ivanova; Robert Hanner; Paul D. N. Hebert

The performance of DNA barcoding as a tool for fast taxonomic verification in ecological assessment projects of small mammals was evaluated during a collecting trip to a lowland tropical rainforest site in Suriname. We also compared the performance of tissue sampling onto FTA CloneSaver cards vs. liquid nitrogen preservation. DNA barcodes from CloneSaver cards were recovered from 85% of specimens, but DNA degradation was apparent, because only 36% of sequence reads were long (over 600 bp). In contrast, cryopreserved tissue delivered 99% barcode recovery (97% > 600 bp). High humidity, oversampling or tissue type may explain the poor performance of CloneSaver cards. Comparison of taxonomic assignments made in the field and from barcode results revealed inconsistencies in just 3.4% of cases and most of the discrepancies were due to field misidentifications (3%) rather than sampling/analytical error (0.5%). This result reinforces the utility of DNA barcoding as a tool for verification of taxonomic identifications in ecological surveys, which is especially important when the collection of voucher specimens is not possible.


In Vitro Cellular & Developmental Biology – Animal | 2007

Species identification in cell culture: a two-pronged molecular approach

Jason Cooper; Greg Sykes; Steve King; Karin Cottrill; Natalia V. Ivanova; Robert Hanner; Pranvera Ikonomi

Species identification of cell lines and detection of cross-contamination are crucial for scientific research accuracy and reproducibility. Whereas short tandem repeat profiling offers a solution for a limited number of species, primarily human and mouse, the standard method for species identification of cell lines is enzyme polymorphism. Isoezymology, however, has its own drawbacks; it is cumbersome and the data interpretation is often difficult. Furthermore, the detection sensitivity for cross-contamination is low; it requires large amounts of the contaminant present and cross-contamination within closely related species may go undetected. In this paper, we describe a two-pronged molecular approach that addresses these issues by targeting the mitochondrial genome. First, we developed a multiplex PCR-based assay to rapidly identify the most common cell culture species and quickly detect cross-contaminations among these species. Second, for speciation and identification of a wider variety of cell lines, we amplified and sequenced a 648-bp region, often described as the “barcode region” by using a universal primer mix targeted at conserved sequences of the cytochrome C oxidase I gene (COI). This method was challenged with a panel of 67 cell lines from 45 diverse species. Implementation of these assays will accurately determine the species of cell lines and will reduce the problems of misidentification and cross-contamination that plague research efforts.


intelligent systems in molecular biology | 2006

An experimental metagenome data management and analysis system

Victor Markowitz; Natalia V. Ivanova; Krishna Palaniappan; Ernest Szeto; Frank Korzeniewski; Athanasios Lykidis; Iain Anderson; Konstantinos Mavrommatis; Victor Kunin; Hector Garcia Martin; Inna Dubchak; Phil Hugenholtz; Nikos C. Kyrpides

The application of shotgun sequencing to environmental samples has revealed a new universe of microbial community genomes (metagenomes) involving previously uncultured organisms. Metagenome analysis, which is expected to provide a comprehensive picture of the gene functions and metabolic capacity for microbial communities, needs to be conducted in the context of a comprehensive data management and analysis system. We present in this paper IMG/M, an experimental metagenome data management and analysis system that is based on the Integrated Microbial Genomes (IMG) system. IMG/M provides tools and viewers for analyzing both metagenomes and isolate genomes individually or in a comparative context. IMG/M is available at http://img.jgi.doe.gov/m.


Journal of Fish Biology | 2009

Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes

M. Valdez-Moreno; Natalia V. Ivanova; M. Elías-Gutiérrez; S. Contreras-Balderas; Paul D. N. Hebert

The freshwater fish fauna of Mexico and Guatemala is exceptionally diverse with >600 species, many endemic. In this study, patterns of sequence divergence were analysed in representatives of this fauna using cytochrome c oxidase subunit 1 (COI) DNA barcodes for 61 species in 36 genera. The average divergence among conspecific individuals was 0.45%, while congeneric taxa showed 5.1% divergence. Three species of Poblana, each occupying a different crater lake in the arid regions of Central Mexico, have had a controversial taxonomic history but are usually regarded as endemics to a single lake. They possess identical COI barcodes, suggesting a very recent history of isolation. Representatives of the Cichlidae, a complex and poorly understood family, were well discriminated by barcodes. Many species of Characidae seem to be young, with low divergence values (<2%), but nevertheless, clear barcode clusters were apparent in the Bramocharax-Astyanax complex. The symbranchid, Opisthernon aenigmaticum, has been regarded as a single species ranging from Guatemala to Mexico, but it includes two deeply divergent barcode lineages, one a possible new endemic species. Aside from these special cases, the results confirm that DNA barcodes will be highly effective in discriminating freshwater fishes from Central America and that a comprehensive analysis will provide new important insights for understanding diversity of this fauna.


Archive | 2008

Assembling DNA Barcodes

Jeremy R. deWaard; Natalia V. Ivanova; Mehrdad Hajibabaei; Paul D. N. Hebert

The Barcode of Life initiative represents an ambitious effort to develop an identification system for eukaryotic life based on the analysis of sequence diversity in short, standardized gene regions. Work is furthest advanced for members of the animal kingdom. In this case, a target gene region has been selected (cytochrome c oxidase I) and pilot studies have validated its effectiveness in species discovery and identification. Based on these positive results, there is now a growing effort to both gather barcode records on a large-scale for members of this kingdom and to identify target barcode regions for the other kingdoms of eukaryotes. In this chapter, we detail the protocols involved in the assembly of DNA barcode records for members of the animal kingdom, but many of these approaches are of more general application.


Mitochondrial DNA | 2011

FISH-BOL and seafood identification: Geographically dispersed case studies reveal systemic market substitution across Canada

Robert Hanner; Sven Becker; Natalia V. Ivanova; Dirk Steinke

Background and aims. The Fish Barcode of Life campaign involves a broad international collaboration among scientists working to advance the identification of fishes using DNA barcodes. With over 25% of the worlds known ichthyofauna currently profiled, forensic identification of seafood products is now feasible and is becoming routine. Materials and methods. Driven by growing consumer interest in the food supply, investigative reporters from five different media establishments procured seafood samples (n = 254) from numerous retail establishments located among five Canadian metropolitan areas between 2008 and 2010. The specimens were sent to the Canadian Centre for DNA Barcoding for analysis. By integrating the results from these individual case studies in a summary analysis, we provide a broad perspective on seafood substitution across Canada. Results. Barcodes were recovered from 93% of the samples (n = 236), and identified using the Barcode of Life Data Systems “species identification” engine (www.barcodinglife.org). A 99% sequence similarity threshold was employed as a conservative matching criterion for specimen identification to the species level. Comparing these results against the Canadian Food Inspection Agencys “Fish List” a guideline to interpreting “false, misleading or deceptive” names (as per s 27 of the Fish Inspection regulations) demonstrated that 41% of the samples were mislabeled. Most samples were readily identified; however, this was not true in all cases because some samples had no close match. Others were ambiguous due to limited barcode resolution (or imperfect taxonomy) observed within a few closely related species complexes. The latter cases did not significantly impact the results because even the partial resolution achieved was sufficient to demonstrate mislabeling. Conclusion. This work highlights the functional utility of barcoding for the identification of diverse market samples. It also demonstrates how barcoding serves as a bridge linking scientific nomenclature with approved market names, potentially empowering regulatory bodies to enforce labeling standards. By synchronizing taxonomic effort with sequencing effort and database curation, barcoding provides a molecular identification resource of service to applied forensics.


Marine and Freshwater Research | 2010

Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: potential in fisheries management

Martha Valdez-Moreno; Lourdes Vásquez-Yeomans; Manuel Elías-Gutiérrez; Natalia V. Ivanova; Paul D. N. Hebert

Barcoding has proven a useful tool in the rapid identification of all life stages of fish species. Such information is of critical importance for fisheries management and conservation, especially in high-diversity regions, such as Mexico’s marine waters, where more than 2200 species occur. The present study reports the barcode analysis of 1392 specimens from the Yucatan Peninsula, corresponding to 610 adults and juveniles, 757 larvae and 25 eggs, representing 181 species (179 teleosts and 2 rays), 136 genera and 74 families. Barcoding results revealed major range extensions and overlooked taxa, including three sympatric species of Albula (one likely undescribed) and a new taxon of Floridichthys. In total, six species of eggs and 34 species of larvae were identified through their barcode match with adults. These cases enabled the first discrimination of the larvae of four species of Eucinostomus, and new information about spawning locality and time was obtained from egg records for the hogfish, Lachnolaimus maximus, which is one of the most commercially important species in the Mexican Caribbean. Also, barcodes revealed mistakes in species recognition during a sport-fish contest. In the future, barcodes will help avoid similar errors and protect rare or endangered species, and will aid regulation of fisheries quotas.

Collaboration


Dive into the Natalia V. Ivanova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Woyke

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Alla Lapidus

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Krishna Palaniappan

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge