Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalie A. Eriksson is active.

Publication


Featured researches published by Natalie A. Eriksson.


Molecular and Cellular Endocrinology | 2009

β-Adrenergic signaling regulates NR4A nuclear receptor and metabolic gene expression in multiple tissues☆

Stephen A. Myers; Natalie A. Eriksson; Rachel Burow; Shu-Ching Mary Wang; George E. O. Muscat

The nuclear hormone receptor (NR) 4A subgroup of orphan nuclear receptors includes three members, Nur77 (NR4A1), Nurr1 (NR4A2) and Nor-1 (NR4A3). Previously we have identified the rapid and robust (in vitro and in vivo) induction of the NR4A subgroup following beta-adrenergic stimulation in mouse skeletal muscle. This was concomitant with changes in the expression of genes involved in the regulation of nutrient metabolism. We have isolated mouse tissue of cardiovascular, endocrine and gastrointestinal origin at 1, 4, 8 and 24h after a single intraperitoneal injection of the beta-adrenergic agonist, isoprenaline. We similarly identified the significant induction (between 1 and 4h) of the NR4A genes in many of these tissues. Moreover, we have utilized TaqMan((R)) Low Density Arrays to determine the beta-adrenergic-sensitive metabolic gene expression in liver, white adipose and heart. In summary, cross-talk between beta-adrenergic and NR4A signaling occurs in several tissues, and is accompanied by modulation of metabolic gene expression.


Molecular Endocrinology | 2013

Research Resource: Nuclear Receptors as Transcriptome: Discriminant and Prognostic Value in Breast Cancer

George E. O. Muscat; Natalie A. Eriksson; Karen Byth; Sherene Loi; Dinny Graham; Shalini Jindal; Melissa J. Davis; Colin Clyne; John W. Funder; Evan R. Simpson; Mark A. Ragan; Elizabeth Kuczek; Peter J. Fuller; Wayne D. Tilley; Peter J. Leedman; Christine L. Clarke

To identify biologically relevant groupings or clusters of nuclear receptors (NR) that are associated with breast neoplasia, with potentially diagnostic, discriminant or prognostic value, we quantitated mRNA expression levels of all 48 members of the human NR superfamily by TaqMan low-density array analysis in 116 curated breast tissue samples, including pre- and postmenopausal normal breast and both ERα(+) and ERα(-) tumor tissue. In addition, we have determined NR levels in independent cohorts of tamoxifen-treated ERα(+) and ERα(-) tissue samples. There were differences in relative NR mRNA expression between neoplastic and normal breast, and between ER(+) and ER(-) tumors. First, there is overexpression of the NUR77 subgroup and EAR2 in neoplastic breast. Second, we identify a signature of five NR (ERα, EAR2, NUR77, TRα, and RARγ) that classifies breast samples with more than 97% cross-validated accuracy into normal or cancer classes. Third, we find a novel negative association between five NR (TRβ, NUR77, RORγ, COUP-TFII, and LRH1) and histological grade. Finally, four NR (COUP-TFII, TRβ, PPARγ, and MR) are significant predictors of metastasis-free survival in tamoxifen-treated breast cancers, independent of ER expression. The present study highlights the discriminant and prognostic value of NR in breast cancer; identifies novel, clinically relevant, NR signatures; and highlights NR signaling pathways with potential roles in breast cancer pathophysiology and as new therapeutic targets.


Molecular Endocrinology | 2012

The nuclear receptor, Nor-1, markedly increases type II oxidative muscle fibers and resistance to fatigue

Michael A. Pearen; Natalie A. Eriksson; Rebecca L. Fitzsimmons; Joel M. Goode; Nick Martel; Sofianos Andrikopoulos; George E. O. Muscat

Nuclear hormone receptors (NR) have been implicated as regulators of lipid and carbohydrate metabolism. The orphan NR4A subgroup has emerged as regulators of metabolic function. Targeted silencing of neuron-derived orphan receptor 1 (Nor-1)/NR4A3 in skeletal muscle cells suggested that this NR was necessary for oxidative metabolism in vitro. To investigate the in vivo role of Nor-1, we have developed a mouse model with preferential expression of activated Nor-1 in skeletal muscle. In skeletal muscle, this resulted in a marked increase in: 1) myoglobin expression, 2) mitochondrial DNA and density, 3) oxidative enzyme staining, and 4) genes/proteins encoding subunits of electron transport chain complexes. This was associated with significantly increased type IIA and IIX myosin heavy chain mRNA and proteins and decreased type IIB myosin heavy chain mRNA and protein. The contractile protein/fiber type remodeling driving the acquisition of the oxidative type II phenotype was associated with 1) the significantly increased expression of myocyte-specific enhancer factor 2C, and phospho-histone deacetylase 5, and 2) predominantly cytoplasmic HDAC5 staining in the Tg-Nor-1 mice. Moreover, the Nor-1 transgenic line displayed significant improvements in glucose tolerance, oxygen consumption, and running endurance (in the absence of increased insulin sensitivity), consistent with increased oxidative capacity of skeletal muscle. We conclude that skeletal muscle fiber type is not only regulated by exercise-sensitive calcineurin-induced signaling cascade but also by NR signaling pathways that operate at the nexus that coordinates muscle performance and metabolic capacity in this major mass tissue.


Hormones and Cancer | 2011

Nuclear Receptor Profiling of Ovarian Granulosa Cell Tumors

Maria Alexiadis; Natalie A. Eriksson; Stacey Jamieson; Melissa J. Davis; Ann E. Drummond; Simon Chu; Colin Clyne; George E. O. Muscat; Peter J. Fuller

Granulosa cell tumors of the ovary (GCT) represent ~5% of malignant ovarian tumors. The adult form is defined by a mutation in the FOXL2 gene. GCT exhibit many of the features of normal proliferating granulosa cells. We have profiled the expression of the 48 human nuclear receptors (NR) by quantitative RT-PCR in a panel of GCT and in two GCT-derived cell lines, COV434 and KGN. The highest level of expression is seen for COUP-TF2 with abundant expression of PPARγ, SF-1, and TR-α. Estrogen receptor (ER)-β is the most abundant of the steroid receptors with relatively high expression also of AR, ER-α, and PR. The concordance of expression for each NR across the tumors is remarkably high with same discordance between the cell lines and the tumors, particularly the COV434 line. No significant differences were observed with respect to tumor stage for NR expression. These findings provide a full profile of NR expression in GCT which will enable full characterization of their roles and potential as therapeutic targets.


Nucleic Acids Research | 2010

Identification and validation of the pathways and functions regulated by the orphan nuclear receptor, ROR alpha1, in skeletal muscle

Suryaprakash Raichur; Rebecca L. Fitzsimmons; Stephen A. Myers; Michael A. Pearen; Patrick Lau; Natalie A. Eriksson; Shu-Ching Mary Wang; George E. O. Muscat

The retinoic acid receptor-related orphan receptor (ROR) alpha has been demonstrated to regulate lipid metabolism. We were interested in the RORα1 dependent physiological functions in skeletal muscle. This major mass organ accounts for ∼40% of the total body mass and significant levels of lipid catabolism, glucose disposal and energy expenditure. We utilized the strategy of targeted muscle-specific expression of a truncated (dominant negative) RORα1ΔDE in transgenic mice to investigate RORα1 signaling in this tissue. Expression profiling and pathway analysis indicated that RORα influenced genes involved in: (i) lipid and carbohydrate metabolism, cardiovascular and metabolic disease; (ii) LXR nuclear receptor signaling and (iii) Akt and AMPK signaling. This analysis was validated by quantitative PCR analysis using TaqMan low-density arrays, coupled to statistical analysis (with Empirical Bayes and Benjamini–Hochberg). Moreover, westerns and metabolic profiling were utilized to validate the genes, proteins and pathways (lipogenic, Akt, AMPK and fatty acid oxidation) involved in the regulation of metabolism by RORα1. The identified genes and pathways were in concordance with the demonstration of hyperglycemia, glucose intolerance, attenuated insulin-stimulated phosphorylation of Akt and impaired glucose uptake in the transgenic heterozygous Tg-RORα1ΔDE animals. In conclusion, we propose that RORα1 is involved in regulating the Akt2-AMPK signaling pathways in the context of lipid homeostasis in skeletal muscle.


Biochemical Journal | 2012

CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells.

Shu-Ching Mary Wang; Dennis H. Dowhan; Natalie A. Eriksson; George E. O. Muscat

CARM1 (co-activator-associated arginine methyltransferase 1)/PRMT4 (protein arginine methyltransferase 4), functions as a co-activator for transcription factors that are regulators of muscle fibre type and oxidative metabolism, including PGC (peroxisome-proliferator-activated receptor γ co-activator)-1α and MEF2 (myocyte enhancer factor 2). We observed significantly higher Prmt4 mRNA expression in comparison with Prmt1-Prmt6 mRNA expression in mouse muscle (in vitro and in vivo). Transfection of Prmt4 siRNA (small interfering RNA) into mouse skeletal muscle C2C12 cells attenuated PRMT4 mRNA and protein expression. We subsequently performed additional qPCR (quantitative PCR) analysis (in the context of metabolism) to examine the effect of Prmt4 siRNA expression on >200 critical genes that control (and are involved in) lipid, glucose and energy homoeostasis, and circadian rhythm. This analysis revealed a strikingly specific metabolic expression footprint, and revealed that PRMT4 is necessary for the expression of genes involved in glycogen metabolism in skeletal muscle cells. Prmt4 siRNA expression selectively suppressed the mRNAs encoding Gys1 (glycogen synthase 1), Pgam2 (muscle phosphoglycerate mutase 2) and Pygm (muscle glycogen phosphorylase). Significantly, PGAM, PYGM and GYS1 deficiency in humans causes glycogen storage diseases type X, type V/McArdles disease and type 0 respectively. Attenuation of PRMT4 was also associated with decreased expression of the mRNAs encoding AMPK (AMP-activated protein kinase) α2/γ3 (Prkaa2 and Prkag3) and p38 MAPK (mitogen-activated protein kinase), previously implicated in Wolff-Parkinson-White syndrome and Pompe Disease (glycogen storage disease type II). Furthermore, stable transfection of two PRMT4-site-specific (methyltransferase deficient) mutants (CARM1/PRMT4 VLD and CARM1E267Q) significantly repressed the expression of Gys1, Pgam2 and AMPKγ3. Finally, in concordance, we observed increased and decreased glycogen levels in PRMT4 (native)- and VLD (methylation deficient mutant)-transfected skeletal muscle cells respectively. This demonstrated that PRMT4 expression and the associated methyltransferase activity is necessary for the gene expression programme involved in glycogen metabolism and human glycogen storage diseases.


Molecular Endocrinology | 2013

Transgenic muscle-specific Nor-1 expression regulates multiple pathways that effect adiposity, metabolism, and endurance.

Michael A. Pearen; Joel M. Goode; Rebecca L. Fitzsimmons; Natalie A. Eriksson; Gethin P. Thomas; Gary Cowin; S.-C. Mary Wang; Zewen K. Tuong; George E. O. Muscat

The mRNA encoding Nor-1/NR4A3 is rapidly and strikingly induced by β2-adrenergic signaling in glycolytic and oxidative skeletal muscle. In skeletal muscle cells, Nor-1 expression is important for the regulation of oxidative metabolism. Transgenic skeletal muscle-specific expression of activated Nor-1 resulted in the acquisition of an endurance phenotype, an increase in type IIA/X oxidative muscle fibers, and increased numbers of mitochondria. In the current study, we used dual-energy x-ray absorptiometry and magnetic resonance imaging analysis to demonstrate decreased adiposity in transgenic (Tg) Nor-1 mice relative to that in wild-type littermates. Furthermore, the Tg-Nor-1 mice were resistant to diet-induced weight gain and maintained fasting glucose at normoglycemic levels. Expression profiling and RT-quantitative PCR analysis revealed significant increases in genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and glycogen synthesis, in concordance with the lean phenotype. Moreover, expression profiling identified several Z-disc and sarcomeric binding proteins that modulate fiber type phenotype and endurance, eg, α-actinin-3. In addition, we demonstrated that the Tg-Nor-1 mouse line has significantly higher glycogen content in skeletal muscle relative to that in wild-type littermates. Finally, we identified a decreased NAD(+)/NADH ratio with a concordant increase in peroxisome proliferator-activated receptor γ coactivator-1α1 protein/mRNA expression. Increased NADH was associated with an induction of the genes involved in the malate-aspartate shuttle and a decrease in the glycerol 3-phosphate shuttle, which maximizes aerobic ATP production. In conclusion, skeletal muscle-specific Nor-1 expression regulates genes and pathways that regulate adiposity, muscle fiber type metabolic capacity, and endurance.


Molecular Endocrinology | 2011

Nr4a1 siRNA Expression Attenuates α-MSH Regulated Gene Expression in 3T3-L1 Adipocytes

S.-C. Mary Wang; Stephen A. Myers; Natalie A. Eriksson; Rebecca L. Fitzsimmons; George E. O. Muscat

Several recent investigations have underscored the growing role of melanocortin signaling in the peripheral regulation of lipid, glucose, and energy homeostasis. In addition, the melanocortins play a critical role in the central control of satiety. These observations, and the latest reports highlighting the emerging role of the nuclear hormone receptor (NR) 4A subgroup in metabolism, have prompted us to investigate the cross talk between [Nle(4), d-Phe(7)] (NDP)-α-MSH and Nr4a signaling in adipose. We have shown that NDP-MSH strikingly and preferentially induces the expression of the NR4A subgroup (but not any other members of the NR superfamily) in differentiated 3T3-L1 adipocytes. Utilization of quantitative PCR on custom-designed metabolic TaqMan low-density arrays identified the concomitant and marked induction of the mRNAs encoding Il-6, Cox2, Pdk4, and Pck-1 after NDP-MSH treatment. Similar experiments demonstrated that the mRNA expression profile induced by cAMP and NDP-MSH treatment displayed unique but also overlapping properties and suggested that melanocortin-mediated induction of gene expression involves cAMP-dependent and -independent signaling. Nr4a1/Nur77 small interfering RNA (siRNA) expression suppressed NDP-MSH-mediated induction of Nr4a1/Nur77 and Nr4a3/Nor-1 (but not Nr4a2/Nurr1). Moreover, expression of the siRNA-attenuated NDP-MSH mediated induction of the mRNAs encoding Il-6, Cox2/Ptgs2, and Pck-1 expression. In addition, Nur77 siRNA expression attenuated NDP-MSH-mediated glucose uptake. In vivo, ip administration of NDP-MSH to C57 BL/6J (male) mice significantly induced the expression of the mRNA encoding Nur77 and increased IL-6, Cox2, Pck1, and Pdk4 mRNA expression in (inguinal) adipose tissue. We conclude that Nur77 expression is necessary for MSH-mediated induction of gene expression in differentiated adipocytes. Furthermore, this study demonstrates cross talk between MSH and Nr4a signaling in adipocytes.


Endocrine-related Cancer | 2012

Protein arginine methyltransferase 6-dependent gene expression and splicing: association with breast cancer outcomes

Dennis H. Dowhan; Matthew J. Harrison; Natalie A. Eriksson; Peter Bailey; Michael A. Pearen; Peter J. Fuller; John W. Funder; Evan R. Simpson; Peter J. Leedman; Wayne D. Tilley; Melissa A. Brown; Christine L. Clarke; George E. O. Muscat

Protein arginine methyltransferase-6 (PRMT6) regulates steroid-dependent transcription and alternative splicing and is implicated in endocrine system development and function, cell death, cell cycle, gene expression and cancer. Despite its role in these processes, little is known about its function and cellular targets in breast cancer. To identify novel gene targets regulated by PRMT6 in breast cancer cells, we used a combination of small interfering RNA and exon-specific microarray profiling in vitro coupled to in vivo validation in normal breast and primary human breast tumours. This approach, which allows the examination of genome-wide changes in individual exon usage and total transcript levels, demonstrated that PRMT6 knockdown significantly affected i) the transcription of 159 genes and ii) alternate splicing of 449 genes. The PRMT6-dependent transcriptional and alternative splicing targets identified in vitro were validated in human breast tumours. Using the list of genes differentially expressed between normal and PRMT6 knockdown cells, we generated a PRMT6-dependent gene expression signature that provides an indication of PRMT6 dysfunction in breast cancer cells. Interrogation of several well-studied breast cancer microarray expression datasets with the PRMT6 gene expression signature demonstrated that PRMT6 dysfunction is associated with better overall relapse-free and distant metastasis-free survival in the oestrogen receptor (ER (ESR1)) breast cancer subgroup. These results suggest that dysregulation of PRMT6-dependent transcription and alternative splicing may be involved in breast cancer pathophysiology and the molecular consequences identifying a unique and informative biomarker profile.


Physiological Genomics | 2011

Chicken ovalbumin upstream promoter-transcription factor II regulates nuclear receptor, myogenic, and metabolic gene expression in skeletal muscle cells

Lisa M. Crowther; Shu-Ching Mary Wang; Natalie A. Eriksson; Stephen A. Myers; Lauren A. Murray; George E. O. Muscat

We demonstrate that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) mRNA is more abundantly expressed (than COUP-TFI mRNA) in skeletal muscle C2C12 cells and in (type I and II) skeletal muscle tissue from C57BL/10 mice. Consequently, we have utilized the ABI TaqMan Low Density Array (TLDA) platform to analyze gene expression changes specifically attributable to ectopic COUP-TFII (relative to vector only) expression in muscle cells. Utilizing a TLDA-based platform and 5 internal controls, we analyze the entire NR superfamily, 96 critical metabolic genes, and 48 important myogenic regulatory genes on the TLDA platform utilizing 5 internal controls. The low density arrays were analyzed by rigorous statistical analysis (with Genorm normalization, Bioconductor R, and the Empirical Bayes statistic) using the (integromics) statminer software. In addition, we validated the differentially expressed patho-physiologically relevant gene (identified on the TLDA platform) glucose transporter type 4 (Glut4). We demonstrated that COUP-TFII expression increased the steady state levels of Glut4 mRNA and protein, while ectopic expression of truncated COUP-TFII lacking helix 12 (COUP-TFΔH12) reduced Glut4 mRNA expression in C2C12 cells. Moreover, COUP-TFII expression trans-activated the Glut4 promoter (-997/+3), and ChIP analysis identified selective recruitment of COUP-TFII to a region encompassing a highly conserved SP1 binding site (in mouse, rat, and human) at nt positions -131/-118. Mutation of the SpI site ablated COUP-TFII mediated trans-activation of the Glut4 promoter. In conclusion, this study demonstrates that in skeletal muscle cells, COUP-TFII regulates several nuclear hormone receptors, and critical metabolic and muscle specific genes.

Collaboration


Dive into the Natalie A. Eriksson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Fuller

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan R. Simpson

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

John W. Funder

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Peter J. Leedman

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Clyne

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge