Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalie A. Wisniewski is active.

Publication


Featured researches published by Natalie A. Wisniewski.


Colloids and Surfaces B: Biointerfaces | 2000

Methods for reducing biosensor membrane biofouling

Natalie A. Wisniewski; Monty Reichert

The deleterious effect that biofouling has on sensor stability is a serious impediment to the development of long term implanted biosensors. This paper reviews the surface modification strategies currently employed to minimize membrane biofouling of in vivo sensors. Nine sensor modifications are discussed herein: hydrogels, phospholipid-based biomimicry, flow-based systems, Nafion, surfactants, naturally derived materials, covalent attachments, diamond-like carbons, and topology.


Journal of Biomedical Materials Research | 2001

Decreased analyte transport through implanted membranes: differentiation of biofouling from tissue effects.

Natalie A. Wisniewski; Bruce Klitzman; B. Miller; William M. Reichert

Membrane biofouling and tissue changes in the foreign body response are known to cause detrimental reductions of analyte transport into implanted biosensors. The relative contribution of each phenomenon is unknown. Hollow fiber microdialysis probes were employed to assess the effect of subcutaneous implantation on glucose flux through polymeric membranes in rats over 8 days and to differentiate the transport effects of biofouling versus tissue changes. Three commercially available membranes were examined: poly(ether sulfone) (PES), polyacrylonitrile (PAN), and polycarbonate (PC). As measured by glucose recovery (the ratio of microdialysis glucose to blood glucose concentrations), transport through PES membranes was significantly less on day 2 than day 0 (39% decrease, p < 0.05) whereas PAN and PC showed no significant decreases in flux until day 8 (42 and 43%, respectively). Application of a transport model to glucose recovery data obtained before implantation in vivo and after explantation indicated that mass transport resistances originating from biofouling and tissue compartments increased between days 0 and 8. However, on average the biofouling layer adherent to the probe created substantially less resistance to glucose transport (12-24% of total) than did the tissue that surrounded the probe. These results suggested that future material developments for biosensors should be directed at understanding and modifying transport properties of tissues at the implant site.


Journal of diabetes science and technology | 2011

Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and the foreign body response-part I: theoretical framework.

Kristen Helton; Buddy D. Ratner; Natalie A. Wisniewski

The importance of biomechanics in glucose sensor function has been largely overlooked. This article is the first part of a two-part review in which we look beyond commonly recognized chemical biocompatibility to explore the biomechanics of the sensor-tissue interface as an important aspect of continuous glucose sensor biocompatibility. Part I provides a theoretical framework to describe how biomechanical factors such as motion and pressure (typically micromotion and micropressure) give rise to interfacial stresses, which affect tissue physiology around a sensor and, in turn, impact sensor performance. Three main contributors to sensor motion and pressure are explored: Applied forces, sensor design, and subject/patient considerations. We describe how acute forces can temporarily impact sensor signal and how chronic forces can alter the foreign body response and Inflammation around an implanted sensor, and thus impact sensor performance. The importance of sensor design (e.g., size, shape, modulus, texture) and specific implant location on the tissue response are also explored. In Part II: Examples and Application (a sister publication), examples from the literature are reviewed, and the application of biomechanical concepts to sensor design are described. We believe that adding biomechanical strategies to the arsenal of material compositions, surface modifications, drug elution, and other chemical strategies will lead to improvements in sensor biocompatibility and performance.


Journal of diabetes science and technology | 2011

Biomechanics of the Sensor-Tissue Interface—Effects of Motion, Pressure, and Design on Sensor Performance and Foreign Body Response—Part II: Examples and Application

Kristen Helton; Buddy D. Ratner; Natalie A. Wisniewski

This article is the second part of a two-part review in which we explore the biomechanics of the sensor-tissue interface as an important aspect of continuous glucose sensor biocompatibility. Part I, featured in this issue of Journal of Diabetes Science and Technology, describes a theoretical framework of how biomechanical factors such as motion and pressure (typically micromotion and micropressure) affect tissue physiology around a sensor and in turn, impact sensor performance. Here in Part II, a literature review is presented that summarizes examples of motion or pressure affecting sensor performance. Data are presented that show how both acute and chronic forces can impact continuous glucose monitor signals. Also presented are potential strategies for countering the ill effects of motion and pressure on glucose sensors. Improved engineering and optimized chemical biocompatibility have advanced sensor design and function, but we believe that mechanical biocompatibility, a rarely considered factor, must also be optimized in order to achieve an accurate, long-term, implantable sensor.


Journal of diabetes science and technology | 2013

Susceptibility of Interstitial Continuous Glucose Monitor Performance to Sleeping Position

Brett D. Mensh; Natalie A. Wisniewski; Brian M. Neil; Daniel R. Burnett

Background: Developing a round-the-clock artificial pancreas requires accurate and stable continuous glucose monitoring. The most widely used continuous glucose monitors (CGMs) are percutaneous, with the sensor residing in the interstitial space. Inaccuracies in percutaneous CGM readings during periods of lying on the devices (e.g., in various sleeping positions) have been anecdotally reported but not systematically studied. Methods: In order to assess the impact of sleep and sleep position on CGM performance, we conducted a study in human subjects in which we measured the variability of interstitial CGM data at night as a function of sleeping position. Commercially available sensors were placed for 4 days in the abdominal subcutaneous tissue in healthy, nondiabetic volunteers (four sensors per person, two per side). Nocturnal sleeping position was determined from video recordings and correlated to sensor data. Results: We observed that, although the median of the four sensor readings was typically 70–110 mg/dl during sleep, individual sensors intermittently exhibited aberrant glucose readings (>25 mg/dl away from median) and that these aberrant readings were strongly correlated with subjects lying on the sensors. We expected and observed that most of these aberrant sleep-position-related CGM readings were sudden decreases in reported glucose values, presumably due to local blood-flow decreases caused by tissue compression. Curiously, in rare cases, the aberrant CGM readings were elevated values. Conclusions: These findings highlight limitations in our understanding of interstitial fluid physiology in the subcutaneous space and have significant implications for the utilization of sensors in the construction of an artificial pancreas.


Analytical and Bioanalytical Chemistry | 2015

In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models

Janna K. Register; Andrew M. Fales; Hsin-Neng Wang; Stephen J. Norton; Eugenia H. Cho; Alina Boico; Sulolit Pradhan; Jason S. Kim; Thies Schroeder; Natalie A. Wisniewski; Bruce Klitzman; Tuan Vo-Dinh

Surface-enhanced Raman scattering (SERS)-active plasmonic nanomaterials have become a promising agent for molecular imaging and multiplex detection. Among the wide variety of plasmonics-active nanoparticles, gold nanostars offer unique plasmon properties that efficiently induce strong SERS signals. Furthermore, nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross sections that are tunable in the near-infrared region of the tissue optical window, rendering them efficient for in vivo spectroscopic detection. This study investigated the use of SERS-encoded gold nanostars for in vivo detection. Ex vivo measurements were performed using human skin grafts to investigate the detection of SERS-encoded nanostars through tissue. We also integrated gold nanostars into a biocompatible scaffold to aid in performing in vivo spectroscopic analyses. In this study, for the first time, we demonstrate in vivo SERS detection of gold nanostars using small animal (rat) as well as large animal (pig) models. The results of this study establish the usefulness and potential of SERS-encoded gold nanostars for future use in long-term in vivo analyte sensing.


Journal of diabetes science and technology | 2012

Biofouling of polymer hydrogel materials and its effect on diffusion and enzyme-based luminescent glucose sensor functional characteristics.

Jason R. Roberts; Jaebum Park; Kristen Helton; Natalie A. Wisniewski; Michael J. McShane

Background: Continuous glucose monitoring is crucial to developing a successful artificial pancreas. However, biofouling and host response make in vivo sensor performance difficult to predict. We investigated changes in glucose diffusivity and sensor response of optical enzymatic glucose sensors due to biological exposure. Method: Three hydrogel materials, poly(2-hydroxyethyl methacrylate) (pHEMA), poly(acrylamide) (pAM), and poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) (p(HEMA-co-AM)), were tested for glucose diffusivity before and after exposure to serum or implantation in rats for 1 month. Luminescent sensors based on these materials were measured to compare the response to glucose before and after serum exposure. Results: Glucose diffusivity through the pHEMA [(8.1 ± 0.38) × 10−8 cm2/s] slabs was much lower than diffusivity through pAM [(2.7 ± 0.15) × 10−6 cm2/s] and p(HEMA-co-AM) [(2.5 ± 0.08) × 10−6]. As expected from these differences, sensor response was highly dependent on material type. The pHEMA sensors had a maximum sensitivity of 2.5%/(mg/dl) and an analytical range of 4.2–356 mg/dl, while the p(HEMA-co-AM) sensors had a higher sensitivity [14.9%/(mg/dl)] and a narrower analytical range (17.6–70.5 mg/dl). After serum exposure, the pHEMA sensors were unaffected, whereas the p(HEMA-co-AM) sensors exhibited significantly decreased sensitivity and increased analytical range. Conclusions: Decreases in glucose diffusivity in the polymers resulting from in vitro serum exposure and residence in vivo were shown to be similar, suggesting that serum incubation was a reasonable approximation of in vivo fouling. While biofouling is expected to affect the response of flux-based sensors, we have shown that this depended on the type of sensor and matrix used. Therefore, proper design and materials selection may minimize response alterations occurring upon implantation.


Journal of Vascular Surgery | 2015

The First-in-Man “Si Se Puede” Study for the use of micro-oxygen sensors (MOXYs) to determine dynamic relative oxygen indices in the feet of patients with limb-threatening ischemia during endovascular therapy

Miguel Montero-Baker; Kit Yee Au-Yeung; Natalie A. Wisniewski; Soya Gamsey; Luis Morelli-Alvarez; Joseph L. Mills; Marianella Campos; Kristen Helton

OBJECTIVE Patients with limb-threatening ischemia exhibit uneven patterns of perfusion in the foot, which makes it challenging to determine adequate topographic perfusion by angiography alone. This study assessed the feasibility of reporting dynamic relative oxygen indices and tissue oxygen concentration from multiple locations on the foot during endovascular therapy using a novel micro-oxygen sensor (MOXY; PROFUSA, Inc, South San Francisco, Calif) approach. METHODS A prospective, 28-day, single-arm, observational study was performed in 10 patients who underwent endovascular therapy for limb-threatening ischemia. At least 24 hours before therapy, four microsensors were injected in each patient (one in the arm, three in the treated foot). The optical signal from the microsensors corresponded to tissue oxygen concentration. A custom detector on the surface of the skin was used to continuously and noninvasively measure the signals from the microsensors. The ability to locate and read the signal from each injected microsensor was characterized. Oxygen data from the microsensors were collected throughout the revascularization procedure. The timing of therapy deployment was recorded during the procedure to assess its relationship with the microsensor oxygen data. Oxygen data collection and clinical evaluation were performed immediately postoperatively as well as postoperatively on days 7, 14, 21, and 28. RESULTS The study enrolled 10 patients (50% male) with ischemia (30% Rutherford class 4, 70% Rutherford class 5). Patients were a mean age of 70.7 years (range, 46-90 years), and all were Hispanic of varying origin. Microsensors were successfully read 206 of 212 times (97.2%) in all patients during the course of the study. Microsensors were compatible with intraoperative use in the interventional suite and postoperatively in an office setting. In nine of 10 revascularization procedures, at least one of the three MOXYs showed an immediate change in the dynamic relative oxygen index, correlating to deployed therapy. Moreover, there was a statistically significant increase in the concentration of oxygen in the foot in preoperative levels compared with postoperative levels. No adverse events occurred related to the microsensor materials. CONCLUSIONS This MOXY approach appears to be safe when implanted in patients with limb-threatening ischemia undergoing endovascular recanalization and is effective in reporting local tissue oxygen concentrations over a course of 28 days. Further testing is needed to determine its potential effect on clinical decision making, both acutely on-table and chronically as a surveillance modality, which ultimately can lead to improved healing and limb salvage.


Biosensors | 2015

Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels

Liam P. Andrus; Rachel Unruh; Natalie A. Wisniewski; Michael J. McShane

An optical biosensor for lactate detection is described. By encapsulating enzyme-phosphor sensing molecules within permeable hydrogel materials, lactate-sensitive emission lifetimes were achieved. The relative amount of monomer was varied to compare three homo- and co-polymer materials: poly(2-hydroxyethyl methacrylate) (pHEMA) and two copolymers of pHEMA and poly(acrylamide) (pAam). Diffusion analysis demonstrated the ability to control lactate transport by varying the hydrogel composition, while having a minimal effect on oxygen diffusion. Sensors displayed the desired dose-variable response to lactate challenges, highlighting the tunable, diffusion-controlled nature of the sensing platform. Short-term repeated exposure tests revealed enhanced stability for sensors comprising hydrogels with acrylamide additives; after an initial “break-in” period, signal retention was 100% for 15 repeated cycles. Finally, because this study describes the modification of a previously developed glucose sensor for lactate analysis, it demonstrates the potential for mix-and-match enzyme-phosphor-hydrogel sensing for use in future multi-analyte sensors.


Journal of diabetes science and technology | 2015

Preclinical Evaluation of Poly(HEMA-co-acrylamide) Hydrogels Encapsulating Glucose Oxidase and Palladium Benzoporphyrin as Fully Implantable Glucose Sensors.

Rachel Unruh; Jason R. Roberts; Scott P. Nichols; Soya Gamsey; Natalie A. Wisniewski; Michael J. McShane

Background: Continuous glucose monitors (CGMs) require percutaneous wire probes to monitor glucose. Sensors based on luminescent hydrogels are being explored as fully implantable alternatives to traditional CGMs. Our previous work investigated hydrogel matrices functionalized with enzymes and oxygen-quenched phosphors, demonstrating sensitivity to glucose, range of response, and biofouling strongly depend on the matrix material. Here, we further investigate the effect of matrix composition on overall performance in vitro and in vivo. Methods: Sensors based on three hydrogels, a poly(2-hydroxyethyl methacrylate) (pHEMA) homopolymer and 2 poly(2-hydroxyethyl methacrylate-co-acrylamide) (pHEMA-co-AAm) copolymers, were compared. These were used to entrap glucose oxidase (GOx), catalase, and an oxygen-sensitive benzoporphyrin phosphor. All sensor formulations were evaluated for glucose response and stability at physiological temperatures. Selected sensors were then evaluated as implanted sensors in a porcine model challenged with glucose and insulin. The animal protocol used in this study was approved by an IACUC committee at Texas A&M University. Results: PHEMA-co-AAm copolymer hydrogels (75:25 HEMA:AAm) yielded the most even GOx and dye dispersion throughout the hydrogel matrix and best preserved GOx apparent activity. In response to in vitro glucose challenges, this formulation exhibited a dynamic range of 12-167 mg/dL, a sensitivity of 1.44 ± 0.46 µs/(mg/dL), and tracked closely with reference capillary blood glucose values in vivo. Conclusions: The hydrogel-based sensors exhibited excellent sensitivity and sufficiently rapid response to the glucose levels achieved in vivo, proving feasibility of these materials for use in real-time glucose tracking. Extending the dynamic range and assessing long-term effects in vivo are ongoing efforts.

Collaboration


Dive into the Natalie A. Wisniewski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristen Helton

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott P. Nichols

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge