Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalie Binder is active.

Publication


Featured researches published by Natalie Binder.


PLOS ONE | 2012

Paternal Diet-Induced Obesity Retards Early Mouse Embryo Development, Mitochondrial Activity and Pregnancy Health

Natalie Binder; Natalie J. Hannan; David K. Gardner

Worldwide, 48% of adult males are overweight or obese. An association between infertility and excessive body weight is now accepted, although focus remains primarily on females. It has been shown that parental obesity results in compromised embryo development, disproportionate changes in embryo metabolism and reduced blastocyst cell number. The aim of this study was to determine whether paternal obesity has negative effects on the resultant embryo. Specifically, using in vitro fertilisation (IVF), we wanted to isolate the functional effects of obesity on sperm by examining the subsequent embryo both pre- and post-implantation. Epididymal sperm was collected from age matched normal and obese C57BL/6 mice and cryopreserved for subsequent IVF with oocytes collected from Swiss females (normal diet/weight). Obesity was induced in male mice by feeding a high fat diet of 22% fat for 10 weeks. Resultant embryos were cultured individually and development monitored using time-lapse microscopy. Paternal obesity resulted in a significant delay in preimplantation embryo development as early as syngamy (P<0.05). Metabolic parameters were measured across key developmental stages, demonstrating significant reduction in mitochondrial membrane potential (P<0.01). Blastocysts were stained to determine trophectoderm (TE) and inner cell mass (ICM) cell numbers, revealing significant differences in the ratio of cell allocation to TE and ICM lineages (P<0.01). Functional studies examining blastocyst attachment, growth and implantation demonstrated that blastocysts derived from sperm of obese males displayed significantly reduced outgrowth on fibronectin in vitro (P<0.05) and retarded fetal development in vivo following embryo transfer (P<0.05). Taken together, these data clearly demonstrate that paternal obesity has significant negative effects on the embryo at a variety of key early developmental stages, resulting in delayed development, reduced placental size and smaller offspring.


Hypertension | 2015

Effects of Pravastatin on Human Placenta, Endothelium, and Women With Severe Preeclampsia

Fiona Brownfoot; Stephen Tong; Natalie J. Hannan; Natalie Binder; Susan P. Walker; Ping Cannon; Roxanne Hastie; Kenji Onda; Tu’uhevaha J. Kaitu’u-Lino

&NA;Preeclampsia is a major pregnancy complication where excess placental release of soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin causes maternal endothelial and multisystem organ injury. Clinical trials have commenced examining whether pravastatin can be used to treat preeclampsia. However, the preclinical evidence supporting pravastatin as a treatment is limited to animal models, with almost no studies in human tissues. Therefore, we examined whether pravastatin reduced sFlt-1 and soluble endoglin secretion and decreased endothelial dysfunction in primary human tissues. Pravastatin reduced sFlt-1 secretion from primary endothelial cells, purified cytotrophoblast cells, and placental explants obtained from women with preterm preeclampsia. It increased soluble endoglin secretion from endothelial cells but did not change secretion from placental explants. The regulation of sFlt-1 by pravastatin seemed to be mediated via the 3-hydroxy-3-methylglutaryl-coenzyme A reductase cholesterol synthesis pathway. Pravastatin also reduced markers of endothelial dysfunction, including vascular cell adhesion molecule-1 expression and leukocyte adhesion on endothelial cells and increased endothelial cell migration and invasion. We also treated 4 patients with preterm preeclampsia presenting at <30 weeks of gestation with daily pravastatin. Pravastatin seemed to stabilize blood pressure, proteinuria, and serum uric acid levels. Furthermore, serum sFlt-1 levels decreased. We collected the placentas at delivery and found that pravastatin reduced sFlt-1 secretion. These results indicate that pravastatin reduced sFlt-1 and soluble endoglin production and decreased endothelial dysfunction in primary human tissues. We also present pilot data, suggesting that pravastatin can stabilize clinical and biochemical features of preterm preeclampsia. Our data obtained in human tissues support the concept that pravastatin is a candidate therapeutic for preeclampsia. Clinical Trial Registration—URL: http://www.anzctr.org.au. Unique identifier: ACTRN12613000268741.


Reproduction, Fertility and Development | 2012

Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst

Natalie Binder; M. Mitchell; David K. Gardner

Maternal obesity results in reproductive complications, whereas the impact of paternal obesity is unclear. In the present study, the effects of parental obesity on preimplantation embryo cell cycle length and carbohydrate utilisation were investigated. Maternal and paternal obesity were assessed independently by deriving zygotes from normal or obese C57BL/6 female mice mated with normal Swiss male mice (maternal obesity), or from normal Swiss female mice mated with normal or obese C57BL/6 male mice (paternal obesity). Zygotes were cultured in vitro and development was then assessed by time-lapse microscopy and metabolism determined using ultramicrofluorescence. Maternal obesity was associated with a significant delay in precompaction cell cycle kinetics from the 1-cell stage. A significant increase in glucose consumption by embryos from obese compared with normal females occurred after compaction, although glycolysis remained unchanged. Similarly, paternal obesity led to significant delays in cell cycle progression during preimplantation embryo development. However, this developmental delay was observed from the second cleavage stage onwards, following embryonic genome activation. Blastocysts from obese males showed disproportionate changes in carbohydrate metabolism, with significantly increased glycolysis. Overall, metabolic changes were not inhibitory to blastocyst formation; however, blastocyst cell numbers were significantly lower when either parent was obese. These data suggest that both maternal and paternal obesity significantly impacts preimplantation embryo physiology.


Hypertension | 2015

Placental-Specific sFLT-1 e15a Protein Is Increased in Preeclampsia, Antagonizes Vascular Endothelial Growth Factor Signaling, and Has Antiangiogenic Activity

Kirsten Palmer; Tu’uhevaha J. Kaitu’u-Lino; Roxanne Hastie; Natalie J. Hannan; Louie Ye; Natalie Binder; Ping Cannon; Laura Tuohey; Terrance G. Johns; Alexis Shub; Stephen Tong

In preeclampsia, the antiangiogenic factor soluble fms-like tyrosine kinase-1 (sFLT-1) is released from placenta into the maternal circulation, causing endothelial dysfunction and organ injury. A recently described splice variant, sFLT-1 e15a, is primate specific and the most abundant placentally derived sFLT-1. Therefore, it may be the major sFLT-1 isoform contributing to the pathophysiology of preeclampsia. sFLT-1 e15a protein remains poorly characterized: its bioactivity has not been comprehensively examined, and serum levels in normal and preeclamptic pregnancy have not been reported. We generated and validated an sFLT-1 e15a–specific ELISA to further characterize serum levels during pregnancy, and in the presence of preeclampsia. Furthermore, we performed assays to examine the bioactivity and antiangiogenic properties of sFLT-1 e15a protein. sFLT-1 e15a was expressed in the syncytiotrophoblast, and serum levels rose across pregnancy. Strikingly, serum levels were increased 10-fold in preterm preeclampsia compared with normotensive controls. We confirmed sFLT-1 e15a is bioactive and is able to inhibit vascular endothelial growth factor signaling of vascular endothelial growth factor receptor 2 and block downstream Akt phosphorylation. Furthermore, sFLT-1 e15a has antiangiogenic properties. sFLT-1 e15a decreased endothelial cell migration, invasion, and inhibited endothelial cell tube formation. Administering sFLT-1 e15a blocked vascular endothelial growth factor induced sprouts from mouse aortic rings ex vivo. We have demonstrated that sFLT-1 e15a is increased in preeclampsia, antagonizes vascular endothelial growth factor signaling, and has antiangiogenic activity. Future development of diagnostics and therapeutics for preeclampsia should consider targeting placentally derived sFLT-1 e15a.


Reproduction | 2015

Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner

Natalie Binder; Sally Beard; Tu'uhevaha J. Kaitu'u-Lino; Stephen Tong; Natalie J. Hannan; David K. Gardner

Fetal growth restriction (FGR) is a major obstetric complication stemming from poor placental development. We have previously demonstrated that paternal obesity in mice is associated with impaired embryo development and significantly reduced fetal and placental weights. We hypothesised that the FGR observed in our rodent model of paternal diet-induced obesity is associated with alterations in metabolic, cell signalling and stress pathways. Male C57BL/6 mice were fed either a normal or high-fat diet for 10 weeks before sperm collection for IVF and subsequent embryo transfer. On embryonic day 14, placentas were collected and RNA extracted from both male and female placentas to assess mRNA expression of 24 target genes using custom RT-qPCR arrays. Peroxisome proliferator-activated receptor alpha (Ppara) and caspase-12 (Casp12) expression were significantly altered in male placentas from obese fathers compared with normal (P<0.05), but not female placentas. PPARA and CASP12 proteins were localised within the placenta to trophoblast giant cells by immunohistochemistry, and relative protein abundance was determined by western blot analysis. DNA was also extracted from the same placentas to determine methylation status. Global DNA methylation was significantly increased in female placentas from obese fathers compared with normal (P<0.05), but not male placentas. In this study, we demonstrate for the first time that paternal obesity is associated with changes in gene expression and methylation status of extraembryonic tissue in a sex-specific manner. These findings reinforce the negative consequences of paternal obesity before conception, and emphasise the need for more lifestyle advice for prospective fathers.


Molecular Human Reproduction | 2015

Male obesity is associated with changed spermatozoa Cox4i1 mRNA level and altered seminal vesicle fluid composition in a mouse model

Natalie Binder; John R. Sheedy; Natalie J. Hannan; David K. Gardner

The rate of obesity among men of reproductive age has tripled in the last three decades. Previously, we demonstrated that paternal obesity resulted in impaired preimplantation developmental kinetics, compromised post-compaction metabolism and decreased blastocyst cell number when embryos were generated in vivo. Subsequently, using in vitro fertilization we found embryos of obese males to have altered metabolism before compaction, reduced inner cell mass cell number and retarded fetal development--the difference between these two studies being the method of embryo generation and the presence or absence of seminal plasma, respectively. Here, we hypothesize that both sperm and seminal plasma are affected by obesity, compromising embryogenesis and pregnancy health in a cumulative manner. Epididymal sperm and seminal vesicle fluid were collected from normal and obese C57BL/6 mice. RNA and DNA were extracted from spermatozoa for qPCR and global methylation analysis, respectively. Proteomic (Luminex) and metabolomic (GC-MS) techniques were employed to analyse the composition of seminal vesicle fluid. Nuclear encoded cytochrome c oxidase subunit IV isoform 1 (Cox4i1) of the terminal enzyme in the mitochondrial respiratory chain demonstrated significantly increased RNA levels in the sperm of obese males (P< 0.05). Quantitative seminal plasma analysis identified significant changes in levels of the hormones insulin, leptin and estradiol between normal and obese males (P < 0.05). Further, the metabolite composition of seminal vesicle fluid was significantly affected by obesity. Consequently, this study has determined that obesity affects both sperm and seminal plasma composition. The interaction between sperm and seminal plasma warrants further analysis.


Hypertension | 2017

Proton Pump Inhibitors Decrease Soluble fms-Like Tyrosine Kinase-1 and Soluble Endoglin Secretion, Decrease Hypertension, and Rescue Endothelial Dysfunction.

Kenji Onda; Stephen Tong; Sally Beard; Natalie Binder; Masanaga Muto; Sevvandi Senadheera; Laura J. Parry; Mark Dilworth; Lewis Renshall; Fiona Brownfoot; Roxanne Hastie; Laura Tuohey; Kirsten Palmer; Toshihiko Hirano; Masahito Ikawa; Tu'uhevaha J. Kaitu'u-Lino; Natalie J. Hannan

Preeclampsia is a severe complication of pregnancy. Antiangiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin are secreted in excess from the placenta, causing hypertension, endothelial dysfunction, and multiorgan injury. Oxidative stress and vascular inflammation exacerbate the endothelial injury. A drug that can block these pathophysiological steps would be an attractive treatment option. Proton pump inhibitors (PPIs) are safe in pregnancy where they are prescribed for gastric reflux. We performed functional studies on primary human tissues and animal models to examine the effects of PPIs on sFlt-1 and soluble endoglin secretion, vessel dilatation, blood pressure, and endothelial dysfunction. PPIs decreased sFlt-1 and soluble endoglin secretion from trophoblast, placental explants from preeclamptic pregnancies, and endothelial cells. They also mitigated tumor necrosis factor-&agr;–induced endothelial dysfunction: PPIs blocked endothelial vascular cell adhesion molecule-1 expression, leukocyte adhesion to endothelium, and disruption of endothelial tube formation. PPIs decreased endothelin-1 secretion and enhanced endothelial cell migration. Interestingly, the PPI esomeprazole vasodilated maternal blood vessels from normal pregnancies and cases of preterm preeclampsia, but its vasodilatory effects were lost when the vessels were denuded of their endothelium. Esomeprazole decreased blood pressure in a transgenic mouse model where human sFlt-1 was overexpressed in placenta. PPIs upregulated endogenous antioxidant defenses and decreased cytokine secretion from placental tissue and endothelial cells. We have found that PPIs decrease sFlt-1 and soluble endoglin secretion and endothelial dysfunction, dilate blood vessels, decrease blood pressure, and have antioxidant and anti-inflammatory properties. They have therapeutic potential for preeclampsia and other diseases where endothelial dysfunction is involved.


Human Reproduction | 2014

Endometrial signals improve embryo outcome: functional role of vascular endothelial growth factor isoforms on embryo development and implantation in mice

Natalie Binder; Jemma Evans; David K. Gardner; Lois A. Salamonsen; Natalie J. Hannan

STUDY QUESTION Does vascular endothelial growth factor (VEGF) have important roles during early embryo development and implantation? SUMMARY ANSWER VEGF plays key roles during mouse preimplantation embryo development, with beneficial effects on time to cavitation, blastocyst cell number and outgrowth, as well as implantation rate and fetal limb development. WHAT IS KNOWN ALREADY Embryo implantation requires synchronized dialog between maternal cells and those of the conceptus. Following ovulation, secretions from endometrial glands increase and accumulate in the uterine lumen. These secretions contain important mediators that support the conceptus during the peri-implantation phase. Previously, we demonstrated a significant reduction of VEGFA in the uterine cavity of women with unexplained infertility. Functional studies demonstrated that VEGF significantly enhanced endometrial epithelial cell adhesive properties and embryo outgrowth. STUDY DESIGN, SIZE, DURATION Human endometrial lavages (n = 6) were obtained from women of proven fertility. Four-week old Swiss mice were superovulated and mated with Swiss males to obtain embryos for treatment with VEGF in vitro. Preimplantation embryo development was assessed prior to embryo transfer (n = 19-30/treatment group/output). Recipient F1 female mice (8-12 weeks of age) were mated with vasectomized males to induce pseudopregnancy and embryos were transferred. On Day 14.5 of pregnancy, uterine horns were collected for analysis of implantation rates as well as placental and fetal development (n = 14-19/treatment). PARTICIPANTS/MATERIALS, SETTING, METHODS Lavage fluid was assessed by western immunoblot analysis to determine the VEGF isoforms present. Mouse embryos were treated with either recombinant human (rh)VEGF, or VEGF isoforms 121 and 165. Preimplantation embryo development was quantified using time-lapse microscopy. Blastocysts were (i) stained for cell number, (ii) transferred to wells coated with fibronectin to examine trophoblast outgrowth or (iii) transferred to pseudo pregnant recipients to analyze implantation rates, placental and fetal development. MAIN RESULTS AND THE ROLE OF CHANCE Western blot analysis revealed the presence of VEGF121 and 165 isoforms in human uterine fluid. Time-lapse microscopy analysis revealed that VEGF (n = 22) and VEGF121 (n = 23) treatment significantly reduced the preimplantation mouse embryo time to cavitation (P < 0.05). VEGF and VEGF165 increased both blastocyst cell number (VEGF n = 27; VEGF165 n = 24: P < 0.001) and outgrowth (n = 15/treatment: 66 h, P < 0.001; 74, 90, 98 and 114 h, P < 0.01) on fibronectin compared with control. Furthermore, rhVEGF improved implantation rates and enhanced fetal limb development (P < 0.05). LIMITATIONS, REASONS FOR CAUTION Due to the nature of this work, embryo development and implantation was only examined in the mouse. WIDER IMPLICATIONS OF THE FINDINGS The absence or reduction in levels of VEGF during the preimplantation period likely affects key events during embryo development, implantation and placentation. The potential for improvement of clinical IVF outcomes by the addition of VEGF to human embryo culture media needs further investigation. STUDY FUNDING/COMPETING INTERESTS This study was supported by a University of Melbourne Early Career Researcher Grant #601040, the NHMRC (L.A.S., Program grant #494802; Fellowship #1002028; N.J.H., Fellowship # 628927; J.E.; project grant #1047756) and L.A.S., Monash IVF Research and Education Foundation. N.K.B. was supported by an Australian Postgraduate Award. Work at PHI-MIMR Institute was also supported by the Victorian Governments Operational Infrastructure Support Program. There are no conflicts of interest to declare.


Hypertension | 2015

Sofalcone Upregulates the Nuclear Factor (Erythroid-Derived 2)-Like 2/Heme Oxygenase-1 Pathway, Reduces Soluble fms–Like Tyrosine Kinase-1, and Quenches Endothelial Dysfunction Potential Therapeutic for Preeclampsia

Kenji Onda; Stephen Tong; Anzu Nakahara; Mei Kondo; Hideaki Monchusho; Toshihiko Hirano; Tu’uhevaha J. Kaitu’u-Lino; Sally Beard; Natalie Binder; Laura Tuohey; Fiona Brownfoot; Natalie J. Hannan

Preeclampsia is a severe complication of pregnancy, characterized by hypertension, oxidative stress, and severe endothelial dysfunction. Antiangiogenic factors, soluble fms–like tyrosine kinase-1 (sFlt-1) and soluble endoglin, play key pathophysiological roles in preeclampsia. Heme oxygenase-1 (HO-1) is a cytoprotective, antioxidant enzyme reported to be downregulated in preeclampsia. Studies propose that inducing HO-1 may also decrease sFlt-1 production. Sofalcone, a gastric antiulcer agent in clinical use, is known to induce HO-1 in gastric epithelium. We aimed to investigate whether sofalcone induces HO-1 and reduces sFlt-1 release from primary human placental and endothelial cells and blocks endothelial dysfunction in vitro. We isolated human trophoblasts and endothelial cells (human umbilical vein endothelial cells) and also used uterine microvascular cells. We investigated the effects of sofalcone on (1) HO-1 production, (2) activation of the nuclear factor (erythroid-derived 2)–like 2 pathway, (3) sFlt-1 and soluble endoglin release, (4) tumor necrosis factor &agr;–induced monocyte adhesion and vascular cell adhesion molecule upregulation, and (5) endothelial tubule formation. Sofalcone potently increased HO-1 mRNA and protein in both primary trophoblasts and human umbilical vein endothelial cells. Furthermore, sofalcone treatment caused nuclear translocation of nuclear factor (erythroid-derived 2)–like 2 and transactivation of other nuclear factor (erythroid-derived 2)–like 2 responsive genes (NQO1, TXN, and GCLC). Importantly, sofalcone significantly decreased the secretion of sFlt-1 from primary human trophoblasts. Sofalcone potently suppressed endothelial dysfunction in 2 in vitro models, blocking tumor necrosis factor &agr;–induced monocyte adhesion and vascular cell adhesion molecule 1 expression in human umbilical vein endothelial cells. These results indicate that in primary human tissues, sofalcone can potently activate antioxidant nuclear factor (erythroid-derived 2)–like 2/HO-1 pathway, decrease sFlt-1 production, and ameliorate endothelial dysfunction. We propose that sofalcone is a novel therapeutic candidate for preeclampsia.


Hypertension | 2015

Heme Oxygenase-1 Is Not Decreased in Preeclamptic Placenta and Does Not Negatively Regulate Placental Soluble fms-Like Tyrosine Kinase-1 or Soluble Endoglin Secretion

Stephen Tong; Tu’uhevaha J. Kaitu’u-Lino; Kenji Onda; Sally Beard; Roxanne Hastie; Natalie Binder; Cathy Cluver; Laura Tuohey; Clare Whitehead; Fiona Brownfoot; Manarangi De Silva; Natalie J. Hannan

Elevated placental release of the antiangiogenic factors, soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sENG), is central to the pathophysiology of preeclampsia. It is widely accepted that heme oxygenase-1 (HO-1) is decreased in preeclamptic placenta and negatively regulates sFlt-1 and sENG production. We set out to verify these contentions. There was no difference in HO-1 mRNA or protein levels in preterm preeclamptic placentas (n=17) compared with gestationally matched controls (n=27). In silico analysis of microarray studies did not identify decreased placental HO-1 expression in preeclamptic placenta. Silencing HO-1 in primary trophoblasts did not affect sFlt-1 protein secretion after 24 or 48 hours. Silencing nuclear factor (erythroid-derived 2)-like 2 (transcription factor that upregulates HO-1) in trophoblasts also did not affect sFlt-1 secretion. Administering tin protoporphyrin IX dichloride (HO-1 inhibitor) or cobalt protoporphyrin (HO-1 inducer) into placental explants did not affect sFlt-1 or sENG secretion. Silencing HO-1 in 2 types of primary endothelial cells (human umbilical vein endothelial and uterine microvascular endothelial cells) significantly increased sFlt-1 secretion but not sENG secretion. However, HO-1 silencing selectively increased mRNA expression of sFlt-1 i13 (generically expressed sFlt-1 variant) but not of sFlt-1 e15a (sFlt-1 variant mainly expressed in placenta). Furthermore, adding tin protoporphyrin IX dichloride decreased sFlt-1, whereas adding HO-1 inducers (cobalt protoporphyrin, dimethyl fumarate, and rosiglitazone) either had no effect or increased sFlt-1 or sENG secretion (these trends are opposite to what is expected). We conclude that HO-1 expression is not decreased in preeclamptic placenta and HO-1 does not negatively regulate placental sFlt-1 and sENG secretion in placental or endothelial cells.

Collaboration


Dive into the Natalie Binder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Tong

Mercy Hospital for Women

View shared research outputs
Top Co-Authors

Avatar

Sally Beard

Mercy Hospital for Women

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Tuohey

Mercy Hospital for Women

View shared research outputs
Top Co-Authors

Avatar

Kenji Onda

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roxanne Hastie

Mercy Hospital for Women

View shared research outputs
Researchain Logo
Decentralizing Knowledge