Natalie C. Holt
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natalie C. Holt.
PLOS ONE | 2010
Gaynor Miller; Monica Neilan; Ruth Chia; Nabeia Gheryani; Natalie C. Holt; Annabelle Charbit; Sara Wells; Valter Tucci; Zuzanne Lalanne; Paul Denny; Elizabeth M. C. Fisher; Michael Cheeseman; Graham N. Askew; T. Neil Dear
Background Fibrillins 1 (FBN1) and 2 (FBN2) are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfans syndrome and congenital contractural arachnodactyly (CCA) result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes. Methodology/Principal Findings As part of a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice. Conclusions These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.
The Journal of Experimental Biology | 2014
Natalie C. Holt; Thomas J. Roberts; Graham N. Askew
The distal muscle-tendon units of cursorial species are commonly composed of short muscle fibres and long, compliant tendons. It is assumed that the ability of these tendons to store and return mechanical energy over the course of a stride, thus avoiding the cyclic absorption and regeneration of mechanical energy by active muscle, offers some metabolic energy savings during running. However, this assumption has not been tested directly. We used muscle ergometry and myothermic measurements to determine the cost of force production in muscles acting isometrically, as they could if mechanical energy was stored and returned by tendon, and undergoing active stretch–shorten cycles, as they would if mechanical energy was absorbed and regenerated by muscle. We found no detectable difference in the cost of force production in isometric cycles compared with stretch–shorten cycles. This result suggests that replacing muscle stretch–shorten work with tendon elastic energy storage and recovery does not reduce the cost of force production. This calls into question the assumption that reduction of muscle work drove the evolution of long distal tendons. We propose that the energetic benefits of tendons are derived primarily from their effect on muscle and limb architecture rather than their ability to reduce the cyclic work of muscle.
Biology Letters | 2014
Natalie C. Holt; Emanuel Azizi
Skeletal muscles are rarely recruited maximally during movement. However, much of our understanding of muscle properties is based on studies using maximal activation. The effect of activation level on skeletal muscle properties remains poorly understood. Muscle optimum length increases with decreased activation; however, the mechanism responsible is unclear. Here, we attempted to determine whether length-dependent calcium effects, or the effect of absolute force underpin this shift. Fixed-end contractions were performed in frog plantaris muscles at a range of lengths using maximal tetanic (high force, high calcium), submaximal tetanic (low force, high calcium) and twitch (low force, low calcium) stimulation conditions. Peak force and optimum length were determined in each condition. Optimum length increased with decreasing peak force, irrespective of stimulation condition. Assuming calcium concentration varied as predicted, this suggests that absolute force, rather than calcium concentration, underpins the effect of activation level on optimum length. We suggest that the effect of absolute force is due to the varying effect of the internal mechanics of the muscle at different activation levels. These findings have implications for our understanding of in vivo muscle function and suggest that mechanical interactions within muscle may be important determinants of force at lower levels of activation.
The Journal of Experimental Biology | 2012
Natalie C. Holt; Graham N. Askew
SUMMARY The metabolic cost of the negotiation of obstacles, and the influence that this has on route selection, are important determinants of an animals locomotor behaviour. We determined the gross metabolic cost of locomotion on slopes of different gradients, ranging from –90 to +90 deg, in leaf-cutter ants (Acromyrmex octospinosus) in a closed-circuit respirometry system. Ants were able to select their preferred speed for each gradient. The gross metabolic energy expenditure per unit distance travelled on the slope (Cpath) was calculated from the rate of CO2 production and the speed of locomotion. These data were used to predict the optimal slopes for minimising the vertical cost of locomotion and vertical journey time. The gross rate of CO2 production was approximately constant (1.7 ml g–1 h–1) and was not significantly affected by slope. Ants moderated their speed with slope (P<0.05), travelling the fastest during level locomotion (2.0±0.1 cm s–1, N=20) and increasingly slowly with increased gradient (both on an incline and a decline). Cpath varied significantly with slope, being lowest during level locomotion (646.0±51.2 J kg–1 m–1) and increasing with increasing gradient. These results suggest that ants adapt their locomotor behaviour to keep metabolic rate constant despite changing mechanical demands. It is predicted that when undertaking a journey involving vertical displacement that ants will select routes with a gradient of between 51 and 57 deg during ascent and with a gradient of between –45 and –51 deg during descent, in order to minimise both vertical journey time and vertical cost of locomotion.
The Journal of Experimental Biology | 2016
Natalie C. Holt; Nicole Danos; Thomas J. Roberts; Emanuel Azizi
ABSTRACT Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force–velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (P<0.05) from 19.1±5.0 kPa and 188.5±24.2 MPa, respectively, in young rats to 39.1±4.2 kPa and 328.0±48.3 MPa in old rats, indicating a mechanical change in the interaction between contractile and connective tissues. Gear ratio decreased with increasing force in young (P<0.001) but not old (P=0.72) muscles, indicating that variable gearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age. Summary: Age-related changes in skeletal muscle support the idea that the interaction between contractile and connective tissues is responsible for variable gearing and is therefore essential to muscle performance.
Proceedings of the Royal Society B: Biological Sciences | 2016
Natalie C. Holt; Emanuel Azizi
Skeletal muscle exhibits broad functional diversity, despite its inherent length and velocity constraints. The observed variation in morphology and physiology is assumed to have evolved to allow muscle to operate at its optimal length and velocity during locomotion. Here, we used the variation in optimum lengths and velocities that occurs with muscle activation level to experimentally test this assumption. Muscle ergometry and sonomicrometry were used to characterize force–length and power–velocity relationships, and in vivo operating lengths and velocities, at a range of activation levels. Operating lengths and velocities were mapped onto activation level specific force–length and power–velocity relationships to determine whether they tracked changing optima. Operating velocities decreased in line with decreased optimal velocities, suggesting that optimal velocities are always used. However, operating lengths did not change with changing optima. At high activation levels, fibres used an optimal range of lengths. However, at lower activation levels, fibres appeared to operate on the ascending limb of sub-maximally activated force–length relationships. This suggests that optimal lengths are only used when demand is greatest. This study provides the first mapping of operating lengths to activation level-specific optima, and as such, provides insight into our assumptions about the factors that determine muscle performance during locomotion.
The Journal of Experimental Biology | 2012
Natalie C. Holt; Graham N. Askew
SUMMARY Asymmetric cycles with more than half of the cycle spent shortening enhance the mechanical power output of muscle during flight and vocalisation. However, strategies that enhance muscle mechanical power output often compromise efficiency. In order to establish whether a trade-off necessarily exists between power and efficiency, we investigated the effects of asymmetric muscle length trajectories on the maximal mechanical cycle-average power output and initial mechanical efficiency (Ei). Work and heat were measured in vitro in a mouse soleus muscle undergoing contraction cycles with 25% (Saw25%), 50% (Saw50%) and 75% (Saw75%) of the cycles spent shortening. Cycle-average power output tended to increase with the proportion of the cycle spent shortening at a given frequency. Maximum cycle-average power output was 102.9±7.6 W kg–1 for Saw75% cycles at 5 Hz. Ei was very similar for Saw50% and Saw75% cycles at all frequencies (approximately 0.27 at 5 Hz). Saw25% cycles had Ei values similar to those of Saw50% and Saw75% cycles at 1 Hz (approximately 0.20), but were much less efficient at 5 Hz (0.08±0.03). The lower initial mechanical efficiency of Saw25% cycles at higher frequencies suggests that initial mechanical efficiency is reduced if the time available for force generation and relaxation during shortening is insufficient. The similar initial mechanical efficiency of Saw50% and Saw75% cycles at all frequencies shows that increasing the proportion of the contraction cycle spent shortening is a strategy that allows an animal to increase muscle mechanical power output without compromising initial mechanical efficiency.
Biomechanics and Modeling in Mechanobiology | 2017
Emanuel Azizi; A. R. Deslauriers; Natalie C. Holt; Caitrin Eaton
The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle’s ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.
Journal of Applied Physiology | 2016
Nicole Danos; Natalie C. Holt; Gregory S. Sawicki; Emanuel Azizi
Efficient muscle-tendon performance during cyclical tasks is dependent on both active and passive mechanical tissue properties. Here we examine whether age-related changes in the properties of muscle-tendon units (MTUs) compromise their ability to do work and utilize elastic energy storage. We empirically quantified passive and active properties of the medial gastrocnemius muscle and material properties of the Achilles tendon in young (∼6 mo) and old (∼32 mo) rats. We then used these properties in computer simulations of a Hill-type muscle model operating in series with a Hookean spring. The modeled MTU was driven through sinusoidal length changes and activated at a phase that optimized muscle-tendon tuning to assess the relative contributions of active and passive elements to the force and work in each cycle. In physiologically realistic simulations where young and old MTUs started at similar passive forces and developed similar active forces, the capacity of old MTUs to store elastic energy and produce positive work was compromised. These results suggest that the observed increase in the metabolic cost of locomotion with aging may be in part due to the recruitment of additional muscles to compensate for the reduced work at the primary MTU. Furthermore, the age-related increases in passive stiffness coupled with a reduced active force capacity in the muscle can lead to shifts in the force-length and force-velocity operating range that may significantly impact mechanical and metabolic performance. Our study emphasizes the importance of the interplay between muscle and tendon mechanical properties in shaping MTU performance during cyclical contractions.
Behavioral Ecology and Sociobiology | 2010
Jolyon J. Faria; John R.G. Dyer; Romain O. Clément; Iain D. Couzin; Natalie C. Holt; Ashley J. W. Ward; Dean A. Waters; Jens Krause